近日,中国科学院大学(以下简称“国科大”)苏刚教授研究团队通过数据驱动的机器学习和高通量第一性原理计算相结合,从2964个二维双金属磷酸盐结构中发现了16种铁电金属材料,极大地扩展了铁电金属家族,将引发人们对铁电金属的进一步研究。该研究工作刚刚在Science Bulletin在线出版。
一般认为铁电性会出现在绝缘体或者半导体中。在金属中由于传导电子会屏蔽内部的静电场不会导致电极化,因而金属中通常不会观察到铁电性。在1965年,安德森和布朗特提出了“铁电金属”的概念,指出在特定的涉及反演对称性破缺的马氏体转变中会导致电极化出现(Anderson et al. Phys. Rev. Lett. 1965,14,217-219)。然而,经过半个多世纪的探索,目前只有极少数的铁电金属被实验发现。2018年,美国科学家在两层或三层的WTe2中观测到了可翻转的面外电极化,这或许是实验上首次观测到铁电性和金属性可以在二维材料中共存(Fei et al. Nature 2018,560,336)。
苏刚研究团队通过设计新的基于电子轨道的结构描述符,利用数据驱动的机器学习和高通量第一性原理计算相结合,大规模研究了二维双金属磷酸盐结构(图1),发现了60种结构稳定的二维铁电材料,包括16种铁电金属和44种铁电半导体(包括7种多铁性材料和7种适合光解水的光催化剂材料)(图2)。这些多铁性材料具有铁磁、反铁磁、铁电和铁弹等两种或三种铁序,在磁电、磁致伸缩和机电纳米器件中有着潜在应用。
这项研究工作不仅极大地丰富了二维铁电金属家族,引发人们对铁电金属的进一步理论和实验研究,而且发展出的利用机器学习和高通量第一性原理计算结合预测先进功能材料的方法对加速新材料研发具有重要意义。这项工作得到了国家重点研发计划项目(2018YFA0305800)、中国科学院先导项目(XDB28000000)、国家自然科学基金委(11834014)和北京市科委(Z191100007219013)的资助,相关计算在中国科学院超级计算中心和国家超级计算广州中心的天河二号平台上完成。
论文链接:
https://www.sciencedirect.com/science/article/pii/S2095927320305892?via%3Dihub=
责任编辑:余玉婷