Influence of Long-term Fertilization on Community Structures and Colonization of Arbuscular mycorrhizal Fungi in a Brown Soil
GUO Jing,, LUO PeiYu,, YANG JinFeng, LI DongDong, HUANG YueYue, HAN XiaoRi,College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866通讯作者:
第一联系人:
收稿日期:2018-04-16接受日期:2018-07-10网络出版日期:2018-12-26
基金资助: |
Received:2018-04-16Accepted:2018-07-10Online:2018-12-26
摘要
关键词:
Abstract
Keywords:
PDF (1063KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
郭静, 罗培宇, 杨劲峰, 李冬冬, 黄月玥, 韩晓日. 长期施肥对棕壤丛枝菌根真菌群落结构及其侵染的影响[J]. 中国农业科学, 2018, 51(24): 4677-4689 doi:10.3864/j.issn.0578-1752.2018.24.008
GUO Jing, LUO PeiYu, YANG JinFeng, LI DongDong, HUANG YueYue, HAN XiaoRi.
0 引言
【研究意义】丛枝菌根 (Arbuscular mycorrhiza,AM)真菌是一类与土壤肥力和植物营养关系密切的重要微生物,它可与绝大多数植物根系形成共生关系[1,2],扩大宿主根系吸收范围和吸收表面积、促进宿主作物对土壤中矿质元素和水分的吸收[3,4,5,6]、改善植物水分代谢、增强植物抗逆性、提高作物产量和改善土壤理化性状[7]、对稳定生态系统、保持生态平衡和可持续发展,促进农、林、牧业生产具有不可替代的经济、社会和生态意义。【前人研究进展】然而,由于AM真菌物种多样性、对寄主作物的选择性和对土壤环境的适应性不同[8],利用 AM 真菌促进植物在不同条件下定殖和生长需要考虑诸多因素的影响。有研究证实不同的土壤类型、植物类型、耕作制度、施肥措施等会对AM真菌多样性、孢子密度、侵染有显著的影响[9,10,11,12,13];但目前对AM真菌影响因素的研究结果并不一致,有研究表明长期施有机肥对AM真菌的多样性、侵染率和孢子密度有积极作用[14,15],但JONER[16]研究发现施有机肥反而会抑制AM真菌的生长,而贾锐等[17]发现AM真菌的侵染率与土壤理化性质无相关性。MUCHANE等[18]研究发现在土壤中施入可溶性磷肥能增加AM真菌的定殖,而秀彦华等[12]发现AM真菌的侵染率与土壤磷含量呈极显著负相关,以上现象可能是由于土壤类型、植物种类和施肥措施的不同引起的。【本研究切入点】鉴于AM真菌会受到多种因素的影响,而其对不同的土壤类型、农业措施的响应不尽相同。因此,探究不同条件对AM真菌的影响因素。【拟解决的关键问题】本研究在38年棕壤长期轮作施肥的基础上,分析棕壤AM真菌群落结构、根系 AM真菌侵染及其影响因素,探究作物、土壤理化性质和AM真菌之间的相互作用,以期为棕壤地区合理利用 AM 真菌资源提依据。1 材料与方法
1.1 试验概况
供试土壤与植物样品采自沈阳农业大学棕壤肥料长期定位试验地(北纬40°48′,东经123°33′),该试验地始于1979年,到2016年已有38年历史,采用玉米-玉米-大豆轮作制度,2016年种植玉米。该试验地的基本概况见文献[19]。本试验选取其中6个施肥处理:(1)不施肥处理(CK);(2)单施化学氮肥(N);(3)施用化学氮磷肥(NP);(4)施用化学氮磷钾肥(NPK);(5)单施有机肥(M);(6)有机肥和化学氮磷肥配施(MNP)。所有肥料作为基肥在播前一次性施入,有机肥为猪厩肥,平均含有机质119.6 g·kg-1,全氮 5.6 g·kg-1,P2O5 8.3 g·kg-1,K2O 10.9 g·kg-1;化学氮磷钾肥分别为尿素、过磷酸钙和硫酸钾,肥料具体施用量见文献[19]。1.2 样品采集及处理
土壤和植物样品于2016年玉米苗期(6月6日)进行采集。各处理土壤采样选取12个点,采样深度为0—20 cm,每3个点充分混匀,剔除砾石、植物根系等杂物,过1 mm筛,一部分测定可溶性有机碳、铵态氮、硝态氮、土壤含水量及提取土壤总DNA;另一部分避光风干后保存,测定土壤pH、碱解氮、速效钾、速效磷及孢子密度。挖取4株完整的玉米根系,用大量自来水冲洗干净后再用灭菌的超纯水冲洗,将洗净的鲜根剪成1 cm长的根段,混匀提取DNA及测定侵染率。1.3 测定方法
可溶性有机碳用K2SO4浸提法,即称取10 g鲜土加入50 mL 0.5 mol·L-1 K2SO4溶液振荡1 h,然后在4 000×g离心力下离心10 min,上清液用0.45 μm的滤膜过滤,滤液用Vario EL II 型TOC仪进行测定[20]。铵态氮和硝态氮的含量采用0.01 mol·L-1 CaCl2浸提法,采用连续流动分析仪(AutoAnalyzer3,德国Seal公司)上机测定。pH、AP、AK、AHN、SM根据土壤农化分析所述方法测定[21]。AM真菌孢子密度采用湿筛倾析法,从20 g 风干土壤中筛取孢子并进行孢子密度统计[22],侵染率采用台盼蓝染色-格子线法测定[23]。土壤DNA采用Powersoil? DNA isolation kit试剂盒(MO BIO, Laboratories Inc,German)进行提取,植物DNA采用DNeasy? Plant Mini Kit试剂盒(Qiage,German)进行提取,提取完的DNA置于-20℃冰箱待用。
1.4 目的片段的扩增及DGGE电泳
AM真菌的目的序列扩增采用巢式PCR[24],第一轮反应体系为10×PCR Buffer(不含Mg2+)5 μL,dNTP 4 μL(2.5 mmol·L-1),MgCl2 3 μL(2.5 mmol·L-1),NS1(10 mmol·L-1)1.5 μL,NS41(10 mmol·L-1)1.5 μL,Taq酶(2 U·μL-1)1 μL,DNA模板1 μL,加ddH2O至50 μL。第二轮反应体系与一轮相同。为了提高DGGE的分辨率,在第二轮PCR上游引物前加了个GC夹(CGCCCGCCGCGCCCCGCGCCCGTCCGCC GCCCCCGCCCG)。由于AM1和NS31不能扩增原囊霉科(Archaeosporaceae)和类球囊霉科(Paraglomaceae)的AM真菌,因此添加了另一对引物ARCH1311和NS8来扩增原囊霉科和类球囊霉科。本研究中DGGE电泳所用的聚丙烯酰胺凝胶的浓度为6%,变性剂范围:30%—50%,电泳缓冲液:1×TAE, 电泳电压:60 V,电泳时间:16 h。PCR具体条件如表1所示。Table 1
表1
表1AM真菌目的序列PCR反应条件
Table 1
引物名称Primer | 引物序列(5′-3′)Primer sequence(5′-3′) | 反应条件Conditions |
---|---|---|
NS1 | GTAGTCATATGCTTGTCTC | 94℃预变性3 min;94℃ 1 min,50 ℃ 1 min,72 ℃ 1 min,30个循环;72 ℃ 7 min (一轮) An initial denaturation of 94℃for 3 min; 94℃ 1 min, 50℃ 1 min, 72℃ 1 min, 30 cycles; 72℃ 7 min (The first round) |
NS41 | CCCGTGTTGAGTCAAATTA | |
GC-NS31 | TTGGAGGGCAAGTCTGGTGCC | |
AM1 | GTTTCCCGTAAGGCGCCGAA | 94 ℃预变性3 min;94 ℃ 30 s,58 ℃ 45 s,72 ℃ 45 s,28个循环;72 ℃ 7 min(二轮) An initial denaturation of 94℃ for 3 min; 94℃ 30 s, 58℃ 45 s, 72℃ 45 s, 28 cycles; 72℃ 7 min (The second round) |
GC-ARCH1311 | TGCTAAATAGCCAGGCTGY | |
NS8 | TCCGCAGGTTCACCTACGGA |
新窗口打开|下载CSV
1.5 DGGE割胶回收测序
从DGGE图谱中切取清晰、具有代表性的条带,采用聚丙烯酰胺凝胶DNA回收试剂盒(北京康维)进行目的基因的回收。回收后的DNA用AM真菌的特异性引物NS31和AM1进行PCR扩增验证,然后交由北京鼎国昌盛生物技术有限责任公司进行克隆测序。1.6 数据分析及处理
图表制作采用Microsoft Office Excel 2010;采用SPSS 19.00进行方差分析(最小显著差数法,LSD);冗余分析(Redundancy Analysis, RDA)及典型对应分析(Canonical Correlation Analysis, CCA)采用CANOCO 4.5软件;DGGE图谱分析采用Quantity one 4.6软件;DNA序列比对在Gen Bank 数据库的 BLAST 程序中进行相似性搜索,查找与目的条带亲缘关系最近的序列,然后采用MEGA 6.0构建进化树。多样性指数采用 Shannon-Wiener 指数(H)和均匀度指数(E)表示, Shannon指数(H)计算公式为H=-∑(PilnPi),均匀度指数(E)计算公式为E=H/lnS。式中,Pi表示第i条带占所在泳道条带总光密度值的比例,S表示每一条泳道AM真菌的条带数量。2 结果
2.1 长期定位施肥对棕壤理化性质的影响
从表2可以看出,长期施肥显著改变了棕壤的理化性质,施肥处理土壤的AP、AHN、NO3--N、NH4+-N、DOC、SM均比不施肥对照显著增加,且趋势为:有机肥处理﹥化肥处理﹥CK;与其他处理相比,MNP处理土壤AHN、NO3--N、NH4+-N、AP、AK、DOC含量最高。M处理的土壤pH最高,为6.64;N处理的pH最低,为4.87;与不施肥处理相比,施用有机肥显著提高土壤pH,而化肥会使土壤pH降低,尤其是单施化学氮肥。Table 2
表2
表2供试土壤的理化性质
Table 2
处理 Treatment | pH (H2O) | 速效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) | 碱解氮 AHN (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 可溶性有机碳 DOC (mg·kg-1) | 土壤含水量 SM (%) |
---|---|---|---|---|---|---|---|---|
CK | 5.75±0.01b | 1.19±0.64d | 96.66±1.21c | 85.04±0.68f | 12.06±0.02e | 3.97±0.18d | 39.42±0.26e | 15.40±0.14b |
N | 4.87±0.00d | 2.14±0.64d | 81.62±1.86c | 110.43±0.94d | 48.38±1.03c | 4.45±0.12cd | 65.41±0.05d | 15.41±0.22b |
NP | 5.35±0.01c | 16.15±0.22c | 76.94±2.32c | 96.60±1.17e | 51.22±1.39bc | 4.83±0.16bc | 71.29±0.74c | 15.12±0.38b |
NPK | 4.99±0.01c | 17.10±0.63c | 107.02±1.16c | 120.73±2.43c | 55.97±0.74b | 5.26±0.046b | 73.10±0.17c | 15.80±0.04b |
M | 6.64±0.06a | 137.72±2.29b | 209.96±9.98b | 132.54±1.74b | 41.81±0.75d | 5.33±0.09b | 108.44±2.51b | 18.11±0.04a |
MNP | 5.78±0.02b | 182.15±7.01a | 268.12±9.75a | 165.56±2.24a | 73.63±0.43a | 7.75±0.12a | 126.45±1.30a | 18.20±0.73a |
新窗口打开|下载CSV
2.2 长期施肥对AM真菌群落结构的影响
如图1所示,NP处理的土壤AM真菌条带数最多(9条),CK、N处理和M处理条带数次之(7—8条),而NPK处理和MNP处理条带数最少(6条),说明施用化学钾肥及施用的含磷肥料不足或过多均会减少棕壤AM真菌的种类。band 16、band 17、band18、band 19和band 22是有机肥处理特有的条带,说明施用有机肥促进了这几种AM真菌的生长;band 20是所有施肥处理共有条带,说明施肥没有对此种AM真菌造成影响。图1
新窗口打开|下载原图ZIP|生成PPT图1不同施肥处理土壤AM真菌的DGGE图谱
Fig. 1DGGE banding patterns of soil AM fungi under different fertilizer treatments
如图2所示,NP、NPK、M处理的根系AM真菌的条带数较多,而CK、N、MNP处理的条带数最少;根系band 8是所有处理共有的条带,没有受施肥的影响;根系band 5是MNP处理特有条带,说明有机肥与化学氮磷肥配施促进了该AM真菌的侵染。由图1和图2可以看出,从土壤中一共分离出来22条条带,而根际中分离出来的条带只有9条,说明只有部分AM 真菌能侵染玉米根系。
图2
新窗口打开|下载原图ZIP|生成PPT图2不同施肥处理根系AM真菌的DGGE图谱
Fig. 2DGGE banding patterns of infected AM fungi under different fertilizer treatments
对土壤和根系AM真菌的DGGE图谱中优势条带进行割胶回收,经克隆测序后共获得31个序列,其中土壤AM真菌有22个序列,根系AM真菌有9个序列。通过GenBank数据库的BLAST 程序进行序列比对,寻找与其亲缘关系最为接近的物种构建进化树,结果如图3所示,sband 11、sband 15、sband 18、sband 19属于巨孢囊霉科(Uncultured Gigasporaceae),而其余条带均属于球囊霉,根系AM真菌均属于球囊霉,说明土壤中的AM真菌只有球囊霉侵染了玉米根系,而巨孢囊霉则未侵染玉米根系。
由表3可知,NP处理土壤中AM真菌的多样性指数显著高于其他处理,而NPK处理的多样性指数最低,说明化学磷肥的施用有利于提高土壤AM真菌的多样性,而化学钾肥的施用则降低了土壤AM真菌的多样性;另外MNP处理虽然未施入化学钾肥,但其AM真菌多样性指数与NPK处理无显著差异,而显著低于NP处理及M处理,这可能与MNP土壤磷水平过高有关。各处理间土壤AM真菌均匀度无显著差异,说明不同施肥对土壤AM真菌的均匀度没有影响。
Table 3
表3
表3不同施肥处理土壤AM真菌多样性指数
Table 3
处理 Treatment | 香农指数 Shannon-Wiener(H) | 均匀度 Evenness (E) | 条带数 Bands |
---|---|---|---|
CK | 2.04±0.01c | 0.982±0.00a | 8 |
N | 1.93±0.01d | 0.988±0.01a | 7 |
NP | 2.18±0.02a | 0.991±0.01a | 9 |
NPK | 1.78±0.03e | 0.997±0.02a | 6 |
M | 2.09±0.05b | 0.999±0.01a | 8 |
MNP | 1.78±0.02e | 0.995±0.01a | 6 |
新窗口打开|下载CSV
由表4可知,NP、NPK和M处理根系AM真菌多样性指数显著高于其他处理,说明不施用化学磷肥或有机肥与化学磷肥配施均可降低侵染玉米根系的AM真菌多样性;而CK、N处理根系AM真菌的均匀度均显著低于其他处理,说明土壤缺磷对侵染玉米根系的均匀度有负面影响。
Table 4
表4
表4不同施肥处理根系AM真菌多样性指数
Table 4
处理 Treatment | 香农指数 Shannon-Wiener(H) | 均匀度 Evenness(E) | 条带数 Bands |
---|---|---|---|
CK | 0.88±0.06c | 0.799±0.02b | 3 |
N | 1.03±0.09c | 0.740±0.01b | 4 |
NP | 1.91±0.03a | 0.981±0.01a | 7 |
NPK | 1.92±0.02a | 0.985±0.01a | 7 |
M | 1.91±0.01a | 0.984±0.01a | 7 |
MNP | 1.36±0.01b | 0.988±0.01a | 4 |
新窗口打开|下载CSV
图3
新窗口打开|下载原图ZIP|生成PPT图3不同施肥处理AM真菌系统发育树
Fig. 3Phylogenetic tree of AM fungi with different fertilizer treatments
2.3 长期施肥对AM真菌孢子密度及侵染率的影响
由图4可以看出,施用有机肥处理的孢子密度显著高于单施化肥处理和不施肥处理,且趋势为:有机肥处理>化肥处理>CK,其中MNP处理的孢子密度最多,为37.8个/g,而CK处理的孢子密度最少,为19.8个/g;施用化肥处理的孢子密度则介于它们两者之间,为26.2—35.6个/g。这表明施肥有利于AM真菌孢子的产生,其中有机肥的施用对土壤AM真菌产孢具有积极影响。由图5可以看出,施肥显著增加了AM真菌的侵染。施肥处理的AM真菌侵染率显著高于不施肥处理,其中NPK处理的侵染率最高,为25.77 %;NPK、M及MNP处理的侵染率显著高于其他施肥处理,说明施用含钾肥料能促进AM真菌对玉米根系的侵染,且化学钾肥效果优于有机肥。
2.4 长期施肥对AM真菌群落结构的影响
如图6所示,长期施肥将棕壤AM真菌分为三大类群,单施氮肥处理、施用有机肥处理和其他处理。其中,N处理和其他处理群落相似度仅为7%,说明长期单施化学氮肥极大地改变了棕壤AM真菌群落结构;施用有机肥处理与其他处理相似度为18%,说明长期施用有机肥对棕壤AM真菌群落结构也有较大影响;而CK处理与NPK、NP之间的相似度达到52%,说明化肥配施对土壤AM 真菌群落结构产生的影响较小。由图7可知,长期施肥将根系AM真菌分为三大类群。NPK处理和其他施肥处理之间的相似度为66%,单独成为一个类群,说明施用化学钾肥对AM真菌侵染产生了较大影响;M处理与NP处理分为一个类群,而MNP处理、N处理与CK处理分为一个类群,说明土壤速效磷含量过高或过低均会对AM真菌侵染产生影响。
图4
新窗口打开|下载原图ZIP|生成PPT图4不同施肥处理AM真菌的孢子密度
Fig. 4The spore density of AM fungi under different fertilizer treatments
图5
新窗口打开|下载原图ZIP|生成PPT图5不同施肥处理AM真菌的侵染率
Fig. 5The colonization rate of AM fungi under different fertilizer treatments
图6
新窗口打开|下载原图ZIP|生成PPT图6不同施肥处理土壤AM真菌 UPGMA聚类图谱
Fig. 6UPGMA dendrogram of soil AM fungi under different fertilizer treatments
图7
新窗口打开|下载原图ZIP|生成PPT图7不同施肥处理根系AM真菌 UPGMA聚类图谱
Fig. 7UPGMA dendrogram of infected AM fungi under different fertilizer treatments
2.5 AM真菌群落结构影响因素
冗余分析结果表明(图8),长期定位施肥条件下,土壤及根系侵染的AM真菌多样性指数与土壤理化性质无相关性,而其孢子密度与AHN、NH4+-N、AP、AK、DOC、SM呈显著正相关,侵染率则与土壤中NO3--N呈显著正相关。侵染率与土壤AM真菌的孢子密度之间由典型对应分析可知,土壤中AHN、AK、DOC和NH4+-N是影响棕壤AM真菌群落结构的主要因素(图9),第一和第二排序轴解释了63.7%的变量(P<0.05,通过蒙特卡罗检验)。其中band 5、band 10、band 16 、band 17、band 18、band 19和band 22所代表的AM真菌与土壤中AHN、AK、DOC和NH4+-N呈显著正相关;而band 1、band 2、band 3 、band 4、band 11、band 12、band 13、band 15和band 21所代表的AM真菌与AHN、AK、DOC和NH4+-N呈显著负相关,其余条带所代表的AM真菌则与土壤理化性质无相关性。图8
新窗口打开|下载原图ZIP|生成PPT图8AM真菌与土壤理化性质的冗余分析
Fig. 8Redundancy analysis depicting the relationship among soil physicochemical properties and AM fungi
图9
新窗口打开|下载原图ZIP|生成PPT图9AM真菌核糖核酸型与土壤理化性质的典型对应分析
Fig. 9Canonical Correlation analysis depicting the relationship among AM fungi ribotypes and physicochemical properties
3 讨论
AM真菌作为自然生态系统的组成部分,能调节植物和土壤关系,在生态系统中有重要作用,因此,研究土壤及侵染的AM真菌群落结构及其影响因素具有现实意义。本研究中 AM真菌的DGGE图谱中大多数条带的迁移位置、数量和亮度在不同施肥处理间有差异,这说明长期不同施肥对棕壤AM真菌的生长产生了影响。其中施用化学钾肥及施用含磷肥料不足或过多均会降低土壤AM真菌的多样性,这与HARLEY等[25]的研究结果一致。值得注意的是,虽然NPK处理土壤AM真菌多样性指数最低,但其根系侵染的AM真菌多样性指数及侵染率均为最高,MNP、M处理次之,这可能是由于施用含钾肥料能促进AM真菌在作物根系的侵染[26],而施用化学钾肥相对于施用有机肥更有利于AM真菌的侵染。 CK、N处理和MNP处理根系AM真菌多样性指数均显著低于其他施肥处理,这可能是由于土壤磷水平过高或过低均会影响侵染玉米根系的AM真菌多样性。程俐陶等[27]研究发现AM真菌的侵染率在早春最低,随后开始上升,在夏秋季达到顶峰,本研究中各施肥处理AM真菌的侵染率均较低(4.02%—25.77%),这可能由于AM真菌在玉米苗期侵染能力还不强,会随着玉米生长逐渐升高,与程俐陶等研究结果类似。BHADALUNG等[28]对27年长期施肥处理的AM真菌多样性进行了调查,发现长期施肥会降低AM真菌的多样性,另一些研究表明AM真菌多样性与土壤速效磷呈正相关关系[29],而本研究中AM真菌多样性与土壤理化性质无相关性,这种差异可能是由于AM真菌对施肥条件、宿主植物和环境条件的选择性和适应能力不同,或进化过程中的历史原因,造成AM真菌对土壤理化性质的敏感性不同[30]。王茜等研究表明地表球囊霉、光壁无梗囊霉、单孢球囊霉、根内球囊霉以及土著AM真菌均能够成功侵染玉米根系[31],说明AM真菌对宿主作物之间没有明显的专一性。本研究土壤中分离的AM真菌主要为球囊霉菌和巨孢囊霉菌,而玉米根系侵染的AM真菌只有球囊霉菌,这可能是由于特殊的施肥管理、土壤类型、环境条件造成侵染根系的AM真菌的优势种群不同引起[32]。本研究中孢子密度与土壤AHN、NH4+-N、AP、AK、DOC、土壤含水量呈显著正相关,与邓小军等[33]研究结果一致,这可能是由于施肥提高了土壤中易利用态养分含量,从而有利于土壤微生物的生长[34]。AM真菌作为专性共生菌,其侵染率会随着外界养分状况的不同有所变化[35],有研究发现一定范围内AM真菌的侵染率与土壤中速效磷呈显著正相关[36]。本研究中发现侵染率与土壤速效磷无相关性,这可能由于施用有机肥处理的土壤速效磷含量过高反而抑制了AM真菌的侵染,而侵染率仅与土壤中NO3--N呈显著正相关,这可能是因为硝态氮含量越高,植物根系分泌作用就越旺盛[37],而植物根系分泌物对AM真菌与植物形成共生体系起着重要的作用[38]。
肖艳萍等[39]发现土壤中AM真菌的多样性和孢子密度之间有极显著正相关关系,而本研究中AM真菌的多样性与孢子密度间无相关性;也有研究表明侵染玉米能力强的AM真菌产孢能力弱,或者产孢能力强的AM真菌对玉米侵染性差[40],而本研究中AM真菌侵染率与孢子密度之间呈显著正相关,以上可能是由于土壤类型、植物种类和施肥措施的不同,导致AM真菌利用碳水化合物的能力不同,从而AM真菌在土壤中生长、侵染和产孢能力也会不同[41]。
CCA分析结果表明玉米苗期土壤中DOC、AHN和NH4+-N对AM真菌的分布有一定的影响,这可能是由于微生物的生长都离不开碳源和氮源,适宜的 C/N 比能显著影响微生物的群落结构[42]。AM真菌的群落分布也受到AK的影响,钾肥的施用抑制了部分AM真菌的生长(表4和图8),但是有研究表明土壤速效钾对AM真菌的影响很可能不那么重要,而氮和磷对AM真菌的可能更重要[43,44],由于土壤速效钾对AM真菌的影响研究也较少,因此其对AM真菌的影响有待进一步研究。
本研究使用DGGE技术来分析AM真菌的群落结构,但此技术存在自身的局限性。虽然本研究通过DGGE技术成功分离了AM真菌,但其与实际值之间可能还存在差距;另外,DGGE不能全面分析土壤中全部微生物群落,只能对微生物群落中数量大于1%的优势种群进行分析[45],本研究中6个处理土壤所获得AM真菌条带仅为22条,根系AM真菌条带仅为9条,通过割胶测序仅获得13个OUT。因此采用DGGE分析可能低估了土壤中及根系侵染的AM真菌多样性。这些都可能是由于PCR引物特异性与覆盖度不足造成[46],因此在以后的研究中应对AM真菌的引物进行优化提高其特异性,或采用Illumina Miseq、第三代测序(Pac Bio)、生物标记物等方法来最大程度保证结果的准确性。
4 结论
长期定位施肥显著改变了棕壤的理化性质,从而影响AM真菌的群落结构,进而对AM真菌的生长和侵染也产生影响。长期施肥条件下棕壤中AM真菌主要为球囊霉菌和巨孢囊霉菌,而侵染玉米根系的AM真菌只有球囊霉菌,碱解氮、速效钾、可溶性有机碳和铵态氮是引起棕壤AM真菌种群变化的主要因素。长期施肥能促进棕壤AM真菌产孢及对玉米根系的侵染,土壤AM真菌孢子密度主要受到土壤碱解氮、铵态氮、速效磷、速效钾、可溶性有机碳、土壤含水量的影响,而侵染率主要受到土壤硝态氮的影响。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
DOI:10.1007/s11104-010-0688-4URL [本文引用: 1]
Arbuscular mycorrhizal fungi (AMF) are crucial for ecosystem functioning, and thus have potential use for sustainable agriculture. In this study, we investigated the impact of organic and mineral...
, 2016(
[本文引用: 1]
[本文引用: 1]
DOI:10.1007/s003740000279URL [本文引用: 1]
A pot experiment was conducted with soil from a long-term (74-year) fertilization field experiment to compare the effects of organic and mineral fertilizers on mycorrhiza formation in clover, and mycorrhiza-mediated plant P uptake. Five treatments were selected from the field experiment representing different forms and levels of P. Mycorrhizal effects on plant growth and P uptake were estimated by comparing plants grown in untreated soil containing indigenous arbuscular mycorrhizal (AM) fungi, with plants grown in pasteurized soil. Short-term versus residual effects of fertilizer/manure were also measured by comparing treatments with or without fertilizers added at the start of the pot experiment. Mycorrhiza formation was greatest in soil that had received no P for 7465years, followed by soil having received 30 or 6065Mg ha –1 farmyard manure (FYM), and soil having received 25 or 4465kg P ha –1 in NPK fertilizers. Plant growth and P uptake were severely reduced in the absence of AM fungi for all mineral fertilizer treatments. In contrast, plants growing in soil that had received FYM grew equally well or better when non-mycorrhizal. Recent additions of NK fertilizer and FYM had no effect on mycorrhiza formation, while additions of NPK led to reduced colonization. It thus seems that moderate quantities of FYM have less adverse effects on AM than equivalent amounts of nutrients in NPK fertilizers, a phenomenon that is most likely due to a temporal difference in P availability and its gradual release that balance plant demand.
,
[本文引用: 1]
[本文引用: 1]
DOI:10.1007/s10457-009-9249-3URL [本文引用: 1]
A field study was carried out on a six-year-old on-farm field trial during long-rains season (April–August) 2003 to investigate the effect of improved fallow systems and phosphorus application on...
,
[本文引用: 2]
[本文引用: 2]
DOI:10.1007/s12665-010-0741-xURL [本文引用: 1]
There is considerable discussion and uncertainty in the literature regarding the importance of fresh litter versus older soil organic matter as sources of soil dissolved organic carbon (DOC) in forest floor. In this study, the differences of organic carbon concentration and stable isotope composition were analyzed under different background conditions to identify the origins of DOC in forest soil. The data show that there is no significant difference in SOC content between these collected soil samples ( P 02>020.05), but the litter-rich surface soils have relatively higher DOC concentration than the litter-lacking ( P 02<020.01) ones, and the δ 13 C values of DOC ( δ 13 C DOC ) are closer to δ 13 C of litter than δ 13 C values of SOC ( δ 13 C SOC ). In the litter-lacking surface soil samples, the range of δ 13 C DOC is between δ 13 C SOC and δ 13 C of dominant plant leaves. These results suggest that DOC mainly derive from litter in the litter-rich surface soil with, and the main path of DOC sources may change with surrounding conditions. In addition, δ 13 C SOC and δ 13 C DOC become more positive, and the absolute values of Δ ( δ 13 C DOC 026102 δ 13 C SOC ) decrease with depth in the soil profiles, which indicate that the percentage of DOC below 502cm, derived from degradation of humus, may increase with soil depth.
[本文引用: 1]
[本文引用: 1]
DOI:10.2307/3760048URL [本文引用: 1]
The community of endogonaceous mycorrhizal fungi present in plots with two different cropping histories in a western Kentucky soybean field was analyzed by wet-sieving of spores from field soil samples and determining viability of spores of certain species with a vital stain, and by conducting a "Most Probable Number" (MPN) bioassay procedure. The MPN procedure detected 17 species, while wet-sieving of field soils detected only 10 species. Population densities of viable spores of individual species were usually lower than those of total spores, although the differences were not always statistically significant. Information from MPN bioassays on population densities of individual species is more useful than information on population densities of total propagules determined only by analysis of colonization of roots because mycorrhizal effects on plants probably are due to effects of individual species. Wet-sieving of spores from field soils and MPN bioassay of propagules both yield different and useful information, and both may often be effectively employed.
,
[本文引用: 1]
[本文引用: 1]
DOI:10.1007/s00572-002-0214-5URLPMID:12938031 [本文引用: 1]
Identification of arbuscular mycorrhizal fungi (AMF) on roots is almost impossible with morphological methods and, due to the presence of contaminating fungi, it is also difficult with molecular biological techniques. To allow broad investigation of the population structure of AMF in the field, we have established a new method to selectively amplify the internal transcribed spacer (ITS) region of most AMF with a unique primer set. Based on available sequences of the rDNA , one primer pair specific for AMF and a few other fungal groups was designed and combined in a nested PCR with the already established primer pair ITS5/ITS4. Amplification from contaminating organisms was reduced by an Alu I restriction after the first reaction of the nested PCR. The method was assessed at five different field sites representing different types of habitats. Members of all major groups within the Glomeromycota (except Archaeosporaceae) were detected at the different sites. Gigasporaceae also proved detectable with the method based on cultivated strains.
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
DOI:10.1007/s11104-004-1829-4URL [本文引用: 1]
Diversity of arbuscular mycorrhizal fungi (AMF) in 27-year long-term NP-fertilization plots under a maize cropping system in Thailand was studied through spore morphological characterization. The plots received 0–0, 60–60, 120–120 and 180–18002kg N-P 2 O 5 ha 611 year 611 as ammonium sulfate and triple superphosphate. The plots were sampled monthly for one year, the AMF spores were counted and morphotyped, and taxa were identified after morphotyping and monospecific pot culture. Spore number g 611 soil, relative spore abundance and Shannon-Wiener indexes were calculated. Sixteen putative taxa were recorded from the field of which nine sporulated on maize roots in pot culture. The long-term fertilization caused decreases in AMF total spore numbers and variation in species diversity depended on sampling time. Effects of fertilization on spore number and also relative spore abundance varied with species and sampling time. Among the nine species sporulating under maize, only Acaulospora sp.1 showed no change ( P > 0.003 after Bonferroni correction) in spore number with fertilization in the field; and was therefore classified as an AMF species insensitive to fertilization. Spores of Entrophospora schenckii, Glomus mosseae , Glomus sp.1, Glomus geosporum -like and Scutellospora fulgida , though they decreased in absolute numbers in response to fertilization, showed no change ( P > 0.003 after Bonferroni correction) in relative abundance; these species were classified as AMF species slightly sensitive to fertilization. Three unidentified species of Glomus , though they decreased in absolute numbers in response to fertilization, showed decreases ( P < 0.003 after Bonferroni correction) in relative abundance; these species were classified as AMF species highly sensitive to fertilization.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.1016/j.apsoil.2012.02.004URL [本文引用: 1]
Plants trigger various responses in the organisms living around them using a wide array of phytochemicals, which are components of their adaptation to a biological environment. The roots of five varieties of chickpea inoculated with Glomus intraradices were extracted, and extracts were fractionated, first based on solubility in methanol and further by HPLC. We found a relationship between chickpea genotype and root phytochemical composition. Several HPLC fractions repressed the germination of AM fungal spores in bioassays conducted in multi-well plates with extracts from the variety CDC Anna. This repression may be an expression of the control of the plant on the AM fungal symbionts. Glomus etunicatum and Gigaspora rosea spore germination responded differently to exposure to the HPLC fractions soluble in 25% methanol. A differential response of AM fungal species to plant phytochemicals could be involved in the so called “host preference” of AM fungi. Whereas extensin and other proteins were identified in a bioactive root extract fraction, other proteins undetected by LC–MS/MS analysis and non-peptidic compounds may be involved in AMF spore germination suppression.
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
DOI:10.1038/nature03608URLPMID:15944706 [本文引用: 1]
Arbuscular mycorrhizal (AM) fungi form mutualistic, symbiotic associations with the roots of more than 80% of land plants(1). The fungi are incapable of completing their life cycle in the absence of a host root. Their spores can germinate and grow in the absence of a host, but their hyphal growth is very limited. Little is known about the molecular mechanisms that govern signalling and recognition between AM fungi and their host plants. In one of the first stages of host recognition, the hyphae of AM fungi show extensive branching in the vicinity of host roots before formation of the appressorium(2-4), the structure used to penetrate the plant root. Host roots are known to release signalling molecules that trigger hyphal branching(5-7), but these branching factors have not been isolated. Here we have isolated a branching factor from the root exudates of Lotus japonicus and used spectroscopic analysis and chemical synthesis to identify it as a strigolactone, 5-deoxy-strigol. Strigolactones are a group of sesquiterpene lactones, previously isolated as seed-germination stimulants for the parasitic weeds Striga and Orobanche(8). The natural strigolactones 5-deoxy-strigol, sorgolactone and strigol, and a synthetic analogue, GR24, induced extensive hyphal branching in germinating spores of the AM fungus Gigaspora margarita at very low concentrations.
,
[本文引用: 1]
[本文引用: 1]
DOI:10.1007/s00572-002-0206-5URLPMID:12836080 [本文引用: 1]
This paper explores if Mimosa species (Fabaceae-Mimosoideae) can serve as arbuscular mycorrhizal (AM) and nutrient "resource islands" in six plant communities in the semiarid valley of Tehuac谩n-Cuicatl谩n, Mexico. Spatial heterogeneity related to the occurrence of Mimosa species results in temporal differences in AM-fungal spore numbers and soil nutrients. A higher number of AM-fungal spores were found in the soil below the canopies of six endemic Mimosa species than in the soil from non-vegetated areas. For four species, Mimosa adenantheroides , Mimosa calcicola , Mimosa luisana and Mimosa polyantha , the soil below their canopies had more AM-fungal spores than the soil in non-vegetated areas during the wet season than during the dry season. Two species, Mimosa lacerata and Mimosa texana var. filipes , however, had more spores under their canopies during the dry season than during the wet season. Although physical differences are present within and between sites, in general the soil below the canopies of Mimosa species had significantly higher nutrient levels than the soil from non-vegetated areas. Mimosa species thus form "resource islands" that are not only rich in nutrients but also in mycorrhizal propagules. Mimosa species can serve as mycorrhizal "resource islands" by directly affecting AM-fungal spore dynamics and/or by serving as spore-traps. A range of plants associated with Mimosa species may benefit from the higher number of AM propagules. We believe that the use of Mimosa resource islands as an option for biodiversity conservation and for land restoration ought to be considered in the Valley.
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
DOI:10.1007/s00572-005-0014-9URLPMID:16133255 [本文引用: 1]
Arbuscular mycorrhizal fungal (AMF) spore communities were surveyed in a long-term field fertilization experiment in Switzerland, where different amounts of phosphorus (P) were applied to soil. Plots receiving no P as well as plots systematically fertilized in excess to plant needs for 31 years were used to test the hypothesis that application of P fertilizer changes the composition and diversity of AMF communities. AMF spores were isolated from the field soil, identified, and counted so as to quantify the effect of P fertilization on AMF spore density, composition, and diversity. Trap cultures were established from field soil with four host plants (sunflower, leek, maize, and Crotalaria grahamiana ), and the spore communities were then analyzed in substrate samples from the pots. Altogether, nine AMF species were detected in the soil. No evidence has been acquired for effect of P fertilization on spore density, composition, and diversity of AMF in both the field soil and in trap cultures. On the other hand, we observed strong effect of crop plant species on spore densities in the soil, the values being lowest under rapeseed and highest under Phacelia tanacetifolia covercrop. The identity of plant species in trap pots also significantly affected composition and diversity of associated AMF communities, probably due to preferential establishment of symbiosis between certain plant and AMF species. AMF spore communities under mycorrhizal host plants (wheat and Phacelia in the fields and four host plant species in trap pots) were dominated by a single AMF species, Glomus intraradices . This resulted in exceptionally low AMF spore diversity that seems to be linked to high clay content of the soil.
URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]