Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees
WANG GuoDong,, XIAO YuanSong,, PENG FuTian,, ZHANG YaFei, GAO HuaiFeng, SUN XiWu, HE YueCollege of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong通讯作者:
第一联系人:
收稿日期:2018-06-5接受日期:2018-07-27网络出版日期:2018-12-26
基金资助: |
Received:2018-06-5Accepted:2018-07-27Online:2018-12-26
摘要
关键词:
Abstract
Keywords:
PDF (676KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王国栋, 肖元松, 彭福田, 张亚飞, 郜怀峰, 孙希武, 贺月. 尿素配施不同用量纳米碳对桃幼树生长及 氮素吸收利用的影响[J]. 中国农业科学, 2018, 51(24): 4700-4709 doi:10.3864/j.issn.0578-1752.2018.24.010
WANG GuoDong, XIAO YuanSong, PENG FuTian, ZHANG YaFei, GAO HuaiFeng, SUN XiWu, HE Yue.
0 引言
【研究意义】氮素是果树必需矿质元素中的核心元素,氮素的合理吸收和分配对果树生长发育、果实产量和品质起重要作用[1,2],氮素的吸收和分配一直是果树生产研究的热点[3]。当前尿素的过量施用十分普遍[4,5],而氮素易挥发、淋溶,氮肥利用率低不仅造成了资源浪费和直接经济损失,还带来了土壤质量下降、地表水富营养化,地下水硝态氮超标等一系列的环境问题[6,7,8]。因此,如何科学施肥,减少氮肥用量进而提高作物养分吸收利用效率,成为现代农业高产高效及可持续发展的重大课题。纳米材料由于自身具有小尺寸效应、表面与界面效应和量子尺寸效应,不同于传统宏观和微观离子、分子及原子的性质[9],目前已在工业领域得到广泛应用,而其能否应用于农业生产,助力现代农业的发展和变革,成为近年来众多****研究的重大课题[10,11,12,13]。【前人研究进展】相关研究表明,纳米材料能够刺激种子萌发,促进作物根系发育[14]。KHODAKOVSKAYA等[15]研究发现,多壁碳纳米管能够诱导烟草的水分运输基因、细胞形成相关基因的表达上调,从而促进植株生长。此外,纳米材料能够调节植物体内多种反应酶的活性,影响植株叶片的发育[16,17]。当前,众多研究人员关注纳米碳材料对作物发育及生理影响,试验材料的用量和受试作物的培养条件,都与自然土壤环境有着较大差别,得到的研究结果难以反映真实自然条件下的情形。另外,纳米碳对作物生长的影响很大程度上取决于受试作物的种类,材料的类型、剂量和性质。【本研究切入点】探究纳米碳对作物生长发育的影响,在农业生产过程中施用纳米碳材料趋利避害,这方面的研究还比较欠缺[13]。桃树是我国分布范围广、栽培面积大、产量较高的多年生落叶果树之一[18],目前关于纳米碳材料是否能对桃树的生长发育起调控作用,纳米碳对桃树氮素吸收利用及植株生长发育影响的研究未见报道。【拟解决的关键问题】在前期研究的基础上,以盆栽桃树幼苗为试材,运用同位素示踪技术,研究尿素配施不同用量的纳米碳对土壤理化性状、桃树氮素吸收利用及植株生长发育的影响,明确纳米碳能否对桃树生长起促进作用并筛选纳米碳与尿素的最佳施用比例,为果树栽培过程中施用纳米碳材料提供新的思路和有益的参考。1 材料与方法
试验于2017年4—9月在山东农业大学园艺试验站进行。1.1 试验材料与设计
本试验以2年生桃品种‘瑞蟠21’/山毛桃(Prunus davidiana (carr) Franch)嫁接苗为试材。试验所用的纳米碳溶液购自北京奈艾斯新材料有限公司,纯度>95 wt%,灰分<2.0 wt%,粒径为10—40 nm,用水分散剂连续超声30 min后离心制得,浓度为3‰,可在室温下长期稳定分散,施用前紫外辐射灭菌1 h。盆栽用土为棕壤土,采集0—20 cm表层园土,供试土壤基本理化性状为:pH 6.83,碱解氮45.48 mg?kg-1,全氮1.18 g?kg-1,有机质10.21 g?kg-1,速效磷36.73 mg?kg-1,速效钾82.54 mg?kg-1。供试化肥为普通尿素(N含量46%)、15N尿素(上海化工研究院生产,丰度10.16%)、磷酸氢二铵(P2O5 46%,N含量18%)、硫酸钾(K2O含量50%)。
选取生长势基本一致(嫁接口上部2 cm处直径1 cm,株高1 m),无病虫害的桃苗50株,栽植于盆(规格为:直径50 cm,高45 cm)中,每盆1株。将园土自然风干后去除植物残体和石块,过筛后每盆装45 kg,每盆均匀施入有机肥(0.3 kg牛粪,风干基养分含量为N 1.560%、P 0.382%、K 0.898%)作为底肥,将盆半埋于地下,上沿距地表面5 cm。待桃幼树缓苗结束正常生长后(5月10日)进行施肥试验,距树干外侧8 cm处挖深15 cm的施肥沟,浇施相同质量尿素(10.87 g,含15N尿素0.5 g)溶液配施不同用量的纳米碳,共设5个处理:CK(0)、T1(5 mL)、T2(10 mL)、T3(15 mL)、T4(20 mL),单株为1次重复,每处理重复10次,完全随机。根据桃幼树生长过程中的需肥规律,于6月15日、7月20日将3.72 g磷酸氢二铵和8.33 g硫酸钾作为追肥分两次等量施入盆内。
1.2 测定项目与方法
1.2.1 土壤pH、氧化还原电位、电导率测定 于6月15日、7月9日、8月15日、9月26日(施肥后36、60、97和139 d)用土钻在距树干外侧15 cm处选取4个位置采集0—30 cm土样,混合采取后将多余盆土填回取样孔中,测定盆土pH(电位法[19],Seven Compact pH计s210),于6月24日、8月8日、9月22日(施肥后45、90和135 d)3个时期测定盆土氧化还原电位(铂电极直接测定法[19],HACH H170-BNDL,美国)和电导率(电导法[19],DDBJ-350,上海雷磁),每处理3次重复,结果取平均值。1.2.2 植株解析样品测定 桃幼树新梢停长后(9月30日),每个处理随机选取3株,破坏性整株取样,采用水冲土洗根法将植株从土壤中完整冲出,将根系冲洗干净,使用专业版WinRHIZO根系分析系统测定根系构型参数,整株解析分为细根(直径≤2 mm)、粗根(直径>2 mm)、主干、中心干、侧枝、春梢叶、秋梢叶7部分。样品按清水→洗涤剂→清水→0.1%盐酸→3次去离子水顺序冲洗后,在105℃下杀青30 min,随后在80℃下烘干至恒重,用电子天平称量各器官干物质积累量,然后用不锈钢粉碎机分别粉碎,过80目筛后放入封口塑料袋中保存于干燥处备用;同时用四分法采集土样,自然风干后过筛备用。植株样品全氮用凯氏定氮法测定[20]。15 N丰度由中国农业科学院原子能所用MAT-251质谱计测定。每处理3次重复,结果取其平均值。
1.2.3 植株干茎粗度、叶片叶绿素SPAD值和净光合水平测定 于5月10日、6月24日、7月25日、9月14日4个时期使用游标卡尺测定各植株嫁接口上部2 cm处干径(mm);于6月16日、7月25日、9月15日3个时期,每株桃幼树均匀选取高度在1 m左右的一次梢中段外围、光照良好、叶片发育基本相同的10片功能叶进行标记,采用便携式叶绿素计测定叶片叶绿素SPAD值(SPAD-502,日本);均匀选取高度在1.2 m左右,充分接受光照且无阻挡的单叶面积在3.75 cm2左右的一次梢中段上6片发育良好的功能叶进行标记,于6月25日、7月25日(晴朗无风的上午9: 00—11: 00)避开主叶脉采用CIRAS-3便携式光合作用测定系统测定叶片净光合速率(PP System英国),测定时温度为(30±2)℃,空气中CO2浓度约为(360±10)μmol·mol-1。
1.3 计算公式
Ndff(%)=(植物样品中15N丰度-15N自然丰度)/(肥料15N丰度-15N自然丰度)×100;氮肥利用率(%)=(Ndff×器官全氮量(g)/施肥量(g)×100;
氮肥分配率(%)=各器官从氮肥中吸收的15N氮量(g) /总吸收15N氮量(g)×100;
土层氮肥残留率(%)=土壤15N残留量(g)/15N施用量(g)×100;
氮肥表观损失率(%)= 1-15N利用率(%)-15N残留率(%)。
1.4 数据处理与统计分析
采用Microsoft Excel 2010进行数据处理和图表绘制,应用SPSS 20.0软件对数据进行单因素方差分析及最小显著差异性检验(Duncan’s新复极差法,P<0.05)。2 结果
2.1 纳米碳对土壤理化性状的影响
土壤是作物生长的物质基础,其理化状况对作物根系的生长发育及植株对养分水分的吸收利用影响很大。由图1可知,施用纳米碳后,土壤的pH明显降低,随纳米碳施用量的增加,降低越显著(图1-A)。土壤电导率随桃幼树的生长发育及施肥时间的延长发生显著变化。结果表明,与对照相比,各处理随纳米碳施用量的增加土壤电导率呈现前期降低后期升高的趋势且差异显著(P<0.05,下同),施肥后45 d,以对照处理的土壤电导率最高,分别比T1、T2、T3、T4处理高12.2%、11.3%、10.9%、5.8%;随后,土壤电导率随纳米碳用量的增加而增大,至施肥后135 d,T1、T2、T3、T4处理比对照分别提高了3.9%、10.6%、28.9%、33.9%,差异显著(图1-B)。施用纳米碳显著提高了土壤氧化还原电位,表现为T4>T3>T2>T1>CK,影响了土壤溶液中氧化还原状态,土壤透气性增加(图1-C)。图1
新窗口打开|下载原图ZIP|生成PPT图1不同纳米碳施用量对土壤pH值、电导率及氧化还原电位的影响
Fig. 1Effects of different nano-carbon concentrations on pH, conductivity and ORP of soil
2.2 纳米碳对桃幼树生长的影响
2.2.1 对桃幼树根系生长的影响 桃树主要通过根系将水分、养分和其他生理活性物质输导至地上部,也将地上部的制造的光合产物、有机养分和生理活性物质运输到地下部,同时根系起固定和支撑等重要作用,根系的发育状况对桃树生长至关重要[21]。须根是根系中最活跃的部位,是桃树吸收氮素的主要部位。由图2可见,纳米碳的施用影响了桃树根系的发育形态,纳米碳对桃幼树根系生长的促进作用主要表现在促进了须根系的生长。根系表面积和根尖数在根系对氮素的吸收利用中至关重要,与对照相比,施用纳米碳显著增加了桃幼树根系的根尖数、分枝数、总表面积和根系总长度,而一级侧根和二级侧根的平均长度显著减小,各处理间差异明显。图2
新窗口打开|下载原图ZIP|生成PPT图2不同纳米碳用量对桃树根系发育的影响
Fig. 2Effects of different amounts of nano- carbon on root development of young peach trees
2.2.2 对桃幼树主干增长量的影响 桃树的干茎增量与植株的整体生长状况有密切的相关性。由图3可知,与对照相比,施用纳米碳对桃主干的直径增加量均有显著提高,植株生长前期以T3处理增加量最大,生长后期以T4处理增加量最大,9月14日测定结果显示,T1、T2、T3、T4处理植株主干直径增加量比CK处理分别提高了11.4%、35.4%、38.6%、45.2%,差异显著。
图3
新窗口打开|下载原图ZIP|生成PPT图3不同纳米碳用量对桃树主干直径增长量的影响
Fig. 3Effects of different amounts of nano-carbon on trunk diameter of peach trees
2.2.3 对桃幼树各器官干物质积累量的影响 统计分析表明,不同处理桃树植株的各器官及总干物质积累量存在明显差异,其中细根、粗根、主干和地下部分以T4处理干物质量最多,总体趋势为T4>T3>T2>T1>CK(P<0.05);中心干、春梢叶、秋梢叶和地上部分以T3处理干物质量最多,分别是CK的1.25倍、1.33倍、1.33倍、1.32倍;植株总物质量以T3处理最多,比CK、T1、T2、T4处理分别提高了28.4%、21.3%、10.7%、4.4%,差异显著;由表1可知,与纳米碳对桃幼树地上部器官生长的促进作用相比,高用量的纳米碳(T4处理)对根系部分生长的促进更显著。
Table 1
表1
表1不同纳米碳用量对桃植株各器官干物质积累量的影响
Table 1
器官 Organ | 干物质积累量Dry matter accumulation (g) | ||||
---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | |
细根 Fine root | 52.7±1.8c | 57.6±1.0bc | 63.8±2.7b | 75.6±6.5a | 78.2±2.1a |
粗根 Coarse root | 109.1±2.9c | 114.9±3.6c | 122.8±4.3b | 132.3±3.3a | 136.1±6.0a |
主干 Trunk | 47.4±1.9d | 54.1±1.2c | 61.6±1.4b | 65.4±2.3a | 67.0±1.5a |
中心干 Central trunk | 134.3±2.9d | 144.7±5.6c | 156.0±4.2b | 168.2±2.7a | 163.8±1.6a |
侧枝 Lateral branch | 110.5±6.2b | 108.7±7.1b | 126.6±4.9a | 135.1±4.3a | 125.±2.1a |
春梢叶 Spring leaves | 41.0±1.9b | 44.2±1.7b | 45.5±1.1b | 54.7±4.3a | 45.5±1.7b |
秋梢叶 Autumn leaves | 110.7±1.9c | 117.5±3.5c | 126.5±6.5b | 146.7±5.5a | 128.9±2.7b |
地下部 Underground part | 161.9±4.5c | 172.4±4.0c | 186.7±6.8b | 207.8±9.8a | 214.4±7.8a |
地上部 Overground part | 443.9±6.0d | 469.2±15.4c | 516.1±9.8b | 570.1±10.6a | 531.1±1.4b |
植株 Plant | 605.8±1.5e | 641.6±12.3d | 702.7±11.6c | 778.0±12.5a | 745.5±6.8b |
根冠比 Root and crown ratio | 0.365±0.015b | 0.368±0.020b | 0.362±0.015b | 0.365±0.020b | 0.404±0.015a |
新窗口打开|下载CSV
2.2.4 对桃幼树叶片净光合速率及叶绿素SPAD值的
影响 叶绿素是重要的含氮化合物[22],叶绿素SPAD值在一定程度上反映出植株体内当时的氮素营养状况[23],施用不同用量的纳米碳后,桃叶片叶绿素SPAD值表现出明显的差异(表2)。在同一施氮水平处理下,纳米碳的施用使桃树叶片一直保持相对较高的叶绿素含量,其中,以T3处理的SPAD值最高,3个时间分别是对照的1.07倍、1.10倍、1.05倍,差异显著。纳米碳的施用对桃树叶片净光合速率(Pn)的影响显著,均以T3处理为最高,分别为14.6 μmol·m-2·s-1和20.8 μmol·m-2·s-1,比对照分别提高了27.0%和18.9%。
Table 2
表2
表2不同纳米碳用量对桃树叶片净光合速率及叶绿素SPAD值的影响
Table 2
处理Treatments | 叶绿素SPAD值 Chlorophy SPAD value | 净光合速率Pn (μmol·m-2·s-1) | |||
---|---|---|---|---|---|
6月16日 | 7月25日 | 9月15日 | 6月25日 | 7月25日 | |
CK | 40.6±0.4c | 45.2±0.3e | 48.8±0.4d | 11.5±0.3d | 17.5±0.2b |
T1 | 41.2±0.1c | 46.4±0.7d | 49.3±0.1cd | 12.8±0.3c | 18.2±0.3b |
T2 | 42.5±0.6b | 47.4±0.7c | 50.2±0.6b | 13.9±0.2b | 20.3±0.6a |
T3 | 43.4±0.3a | 49.5±0.4a | 51.4±0.3a | 14.6±0.5a | 20.8±0.2a |
T4 | 42.4±0.3b | 48.6±0.3ab | 49.6±0.3bc | 14.4±0.3ab | 20.2±0.6a |
新窗口打开|下载CSV
2.3 纳米碳对桃幼树氮素吸收利用的影响
2.3.1 对桃幼树各器官的Ndff值和15N分配率的影响 器官的Ndff值是指植株器官15N肥料中吸收分配到的15N量对该器官全氮量的贡献率,它反映了植株器官对肥料15N的吸收征调能力[24]。由表3可知,各施用纳米碳处理桃树植株的细根、粗根、侧枝、春梢叶等器官中Ndff值均显著高于对照,以T4处理最高;与对照相比,T1、T2、T3处理的桃树主干、中心干的Ndff值提高了27.7%、27.7%、15.3%和16.0%、25.9%、18.5%;春梢叶中T2、T3、T4处理比对照提高了17.9%、19.6%、21.4%,差异显著。表明纳米碳的施用提高了桃树各器官对氮肥的吸收征调能力。Table 3
表3
表3不同纳米碳施用量对桃树各器官Ndff值、15N分配率的影响
Table 3
项目 Item | 处理 Treatments | 细根 Fine root | 粗根 Coarse root | 主干 Trunk | 中心干 Central trunk | 侧枝 Lateral branch | 春梢叶 Spring leaves | 秋梢叶 Autumn leaves |
---|---|---|---|---|---|---|---|---|
Ndff (%) | CK | 0.82±0.04d | 0.69±0.03d | 0.72±0.05c | 0.81±0.03c | 0.64±0.04d | 0.83±0.03d | 0.56±0.03b |
T1 | 0.98±0.04c | 0.81±0.02c | 0.92±0.03a | 0.94±0.03b | 0.72±0.03c | 0.89±0.02c | 0.60±0.03b | |
T2 | 1.05±0.03b | 0.84±0.02c | 0.92±0.02a | 1.02±0.04a | 0.85±0.03b | 0.95±0.03bc | 0.66±0.01a | |
T3 | 1.09±0.00ab | 0.96±0.03b | 0.83±0.02b | 0.96±0.02b | 0.91±0.01a | 1.02±0.04b | 0.67±0.04a | |
T4 | 1.13±0.03a | 1.03±0.04a | 0.74±0.01c | 0.85±0.01c | 0.95±0.02a | 1.09±0.05a | 0.68±0.03a | |
氮素分配率 N distribtion rate (%) | CK | 16.37±0.49a | 12.73±0.98ab | 3.69±0.33b | 9.98±0.55b | 9.69±0.45bc | 14.44±0.42a | 33.09±0.80a |
T1 | 15.98±0.80a | 12.99±0.43ab | 4.27±0.26a | 10.97±0.34a | 9.18±0.50c | 14.83±0.78a | 31.79±1.04ab | |
T2 | 15.81±0.75a | 12.09±0.30b | 3.54±0.23b | 10.45±0.47ab | 10.63±0.59a | 15.24±0.75a | 32.25±0.82a | |
T3 | 15.89±1.20a | 12.86±0.70ab | 2.87±0.11c | 9.97±0.49b | 10.27±0.39ab | 15.73±1.15a | 32.40±0.33a | |
T4 | 16.99±0.98a | 13.42±0.67a | 2.49±0.05c | 9.63±0.11b | 10.26±0.17ab | 14.99±0.86a | 30.50±0.82b |
新窗口打开|下载CSV
图4
新窗口打开|下载原图ZIP|生成PPT图4不同纳米碳施用量对桃树各器官氮素吸收、土壤氮素残留及损失率的影响
Fig. 4Effects of different nano-carbon dosage on nitrogen absorption of peach, soil nitrogen residues and loss rate
各器官中15N占全株15N总量的百分率反映了肥料氮在树体内的分布及在各器官迁移的规律[25]。不同处理的植株部分器官氮肥分配率存在明显差异,与对照相比,T1处理显著提高了主干、中心干的氮素分配率,提高分别达15.7%、9.92%,T2处理降低了粗根的氮素分配率,达5.0%,T3、T4处理降低了主干的氮素分配率,说明纳米碳的施用影响了氮素在桃树植株各器官中的分配。
2.3.2 对桃幼树氮素吸收、土壤氮素残留及损失的影响 不同用量的纳米碳处理,桃树植株的15N利用率不同。由图5可知,与对照相比,施用纳米碳后桃植株的氮素利用率均显著提高,表现为:T3>T4>T2>T1>CK(P<0.05),以T3处理的植株氮素利用率最高,为45.2%,分别较CK、T1、T2、T4处理提高了66.5%、41.7%、20.14%、5.8%。统计结果表明,随纳米碳用量增加,土壤氮素残留率显著提高,T1、T2、T3、T4处理分别为对照的1.06倍、1.35倍、1.62倍和1.70倍。各处理中T3处理的氮素损失率最低,为25.78%,分别比CK、T1、T2、T4处理降低113.1% 、90.2% 、48.1%、3.7%。可见,施用纳米碳有利于桃幼树对氮素的吸收利用,有利于剩余氮素在土壤中保留,氮素的损失减少,其中,以T3处理作用效果最显著。
3 讨论
3.1 纳米碳影响土壤理化性状
纳米材料对植物和环境的影响可能在很大程度上决定其应用方向及其在农业生产上的潜力[26]。梁太波等[27]的研究表明纳米碳溶胶能够明显降低碱性土壤pH,活化土壤养分,有效减少养分淋失,显现出良好的改良碱性土壤的效果。在本试验中,添加纳米碳在一定程度上降低了盆土的pH,这可能是因为尿素水解过程中产生的NH4+会吸收土壤中的H+,导致土壤pH出现短暂的升高,而纳米碳的施用减缓了这一过程,导致盆土的pH比对照低。与对照相比,在施肥后的较短时间内,施纳米碳各处理电导率呈降低趋势,这可能是由于纳米碳吸附土壤中养分离子,形成以纳米碳为胶核的胶体颗粒导致土壤微团聚体重组,土壤电导率降低;之后,随降雨和浇水增多,对照中的养分随水分淋失严重,而纳米碳则将吸附的养分缓慢释放,土壤中的离子浓度增大,土壤电位差增大。此外,纳米碳的施用显著提高了土壤氧化还原电位,影响了土壤透气性,土壤质地改善。桃根系对养分的吸收,涉及复杂的电化学过程,纳米碳可能参与并影响了这一过程,使土壤理化状况呈现有利于桃树生长发育的状态[28]。3.2 纳米碳影响桃树植株生长及氮素吸收利用
桃树为浅根系果树,试验以半埋于地下的盆栽形式进行,根系主要集中分布在10—40 cm深的土层内,须根系是吸收土壤氮素的主要部位,土壤养分供应状况直接影响到桃树根系的吸收与生长以及地上部的生长发育[29]。本研究发现,纳米碳的施用促进了桃幼树须根系的生长发育,有效改善根系分布与结构,影响了根冠比,根系生长状况良好能进一步促进植株对养分的吸收利用。此外,纳米碳的施用显著提高了桃树叶片的叶绿素含量及净光合速率,对各器官及植株整体干物质积累量影响显著。这可能是由于纳米碳影响了植株体内相关蛋白基因的表达,增强了叶片叶绿体的光合作用活性和电子转移速率[30],制造出更多的光合产物,进而促进了桃植株各器官的生长,这与LIU等[31]在烟草细胞、SERAG等[32]在拟南芥中得到的结果一致。KHODAKOVSKAYA等[33]将番茄种子暴露于含有纳米碳材料的培养基中,发现纳米碳会影响种子萌发和幼苗的生长,透射电镜观察发现小于20 nm的纳米碳能进入番茄根系细胞中,提高根系吸收养分的能力。刘安勋等[34]研究发现,纳米材料能提高作物活性,影响水分子能态,植株吸收水分的过程中增加了对养分的吸收。桃树的成枝力强,营养生长十分旺盛,特别是2—4年生的桃幼树营养生长更为强旺,整个生长季需要大量持续而稳定的氮素供应以用于器官和形态的形成。本试验研究表明,纳米碳的施用显著提高了桃树各器官的Ndff值和植株的氮素利用率,影响了氮素在植株体内的分配,促进了桃树对氮素的吸收利用,这可能与氮素被桃根系吸收后在植株体内向地上部转移有关,不同纳米碳施用量影响了植株对氮素吸收的数量,进而影响了氮素在植株内的转运和在各器官的分配。另外,施用纳米碳有利于剩余氮素保留在土壤中,减少了氮素的挥发和淋溶,降低了氮素的损失率,这可能与纳米碳的小尺寸和巨大表面积有关,表明纳米碳有较强的吸附性能,土壤氮素缓慢持续地释放,被桃树根系吸收,较低浓度而持久供应的氮素有助于植株的利用,降低肥料损失,这与李淑敏等[35]在玉米上的研究结果相符。此外,作为一种具有高表面能的小尺寸材料,纳米碳可能会吸附尿素共同被根系吸收,在植株体内转运并发挥作用,影响作物代谢过程、促进植株生长发育并表现出良好的效果,有待进一步探究。
4 结论
纳米碳可以改善土壤理化性状,有效吸附土壤中的氮素,有效减低氮素损失,显著提高植株氮素利用率和土壤氮素残留率,并显著促进桃树根系的生长和植株形态建成。本试验中,以10.87 g尿素配施15 mL纳米碳溶胶效果最好。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1093/jxb/err248URLPMID:21963614 [本文引用: 1]
Abstract In recent years, agricultural growth in China has accelerated remarkably, but most of this growth has been driven by increased yield per unit area rather than by expansion of the cultivated area. Looking towards 2030, to meet the demand for grain and to feed a growing population on the available arable land, it is suggested that annual crop production should be increased to around 580 Mt and that yield should increase by at least 2% annually. Crop production will become more difficult with climate change, resource scarcity (e.g. land, water, energy, and nutrients) and environmental degradation (e.g. declining soil quality, increased greenhouse gas emissions, and surface water eutrophication). To pursue the fastest and most practical route to improved yield, the near-term strategy is application and extension of existing agricultural technologies. This would lead to substantial improvement in crop and soil management practices, which are currently suboptimal. Two pivotal components are required if we are to follow new trajectories. First, the disciplines of soil management and agronomy need to be given increased emphasis in research and teaching, as part of a grand food security challenge. Second, continued genetic improvement in crop varieties will be vital. However, our view is that the biggest gains from improved technology will come most immediately from combinations of improved crops and improved agronomical practices. The objectives of this paper are to summarize the historical trend of crop production in China and to examine the main constraints to the further increase of crop productivity. The paper provides a perspective on the challenge faced by science and technology in agriculture which must be met both in terms of increased crop productivity but also in increased resource use efficiency and the protection of environmental quality.
,
DOI:10.1016/B978-0-12-394277-7.00001-4URL [本文引用: 1]
While the concept of sustainability as a goal has become widely accepted, the dominant agricultural paradigm still considers high yield and reduced environmental impact being in conflict with one another. During the past 49years (1961-2009), the 3.4-fold increase in Chinese agricultural food production can be partly attributed to a 37-fold increase in N fertilization and a 91-fold increase in P fertilization, but the environment costs have been very high. New advances for sustainability of agriculture and ecosystem services will be needed during the coming 50years to improve nutrient use efficiency (NUE) while increasing crop productivity and reducing environmental risk. Here, we advocate and develop integrated nutrient management (INM) based on more than 20years of studies. In this INM approach, the key components comprise (1) optimizing nutrient inputs by taking all possible nutrient sources into consideration, (2) matching nutrient supply in root zone with crop requirements spatially and temporally, (3) reducing N losses in intensively managed cropping systems, and (4) taking all possible yield-increasing measures into consideration. Recent large-scale application of INM for cereal, vegetable, and fruit cropping systems has shed light on how INM can lead to significantly improved NUE, while increasing crop yields and reducing environmental risk. The INM has already influenced Chinese agricultural policy and national actions, and resulted in increasing food production with decreased climb of chemical fertilizer consumption at a national scale over recent years. The INM can thus be considered an effective agricultural paradigm to ensure food security and improve environmental quality worldwide, especially in countries with rapidly developing economies.
,
DOI:10.1016/j.envpol.2005.11.005URLPMID:16364521 [本文引用: 1]
The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha 611 on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat ( Triticum aestivum L.)–maize ( Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple ( Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha 611, with residual soil nitrate-N after harvest amounting to 221–275, 1173 and 613 kg N ha 611 in the top 90 cm of the soil profile and 213–242, 1032 and 976 kg N ha 611 at 90–180 cm depth in wheat–maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs.
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
DOI:10.1002/smll.201201225URLPMID:23019062Magsci [本文引用: 1]
Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.
,
Magsci [本文引用: 1]
The photosystem I (PS Ⅱ) particles were purified by means of nano-anatase TiO<sub>2</sub> treatment of spinach and studied by spectroscopy.The results show that the electron transport and the oxygen-evolving rate of PS I are accelerated after it has been treated with nano-anatase TiO<sub>2</sub>; the UV-Vis absorption spectrum of PS I particles is increased; the red shift of fluorescence emission peak of PS I is 2 nm; the peak intensity is decreased; the PS Ⅱ signal I s of low temperature electron paramagnetic resonanace(EPR) spectrum is intensified under light, and the PS I circular dichroism(CD) spectrum is similar to that of control.It is suggested that nano-anatase TiO<sub>2</sub> might bind to the PS I reaction center complex and intensify the function of the PS I electron donor, however, nano-anatase TiO<sub>2</sub> treatment does not change the configuration of the PS Ⅱ reaction center complex.
,
DOI:10.1385/BTER:105:1-3:269URLPMID:16034170 [本文引用: 1]
Abstract The effects of nano-TiO2 (rutile) on the photochemical reaction of chloroplasts of spinach were studied. The results showed that when spinach was treated with 0.25% nano-TiO2, the Hill reaction, such as the reduction rate of FeCy, and the rate of evolution oxygen of chloroplasts was accelerated and noncyclic photophosphorylation (nc-PSP) activity of chloroplasts was higher than cyclic photophosphorylation (c-PSP) activity, the chloroplast coupling was improved and activities of Mg2+-ATPase and chloroplast coupling factor I (CF1)-ATPase on the thylakoid membranes were obviously activated. It suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.
[本文引用: 1]
[本文引用: 1]
[本文引用: 3]
[本文引用: 3]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
, 1990(
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3389/fpls.2016.00172URLPMID:4762280 [本文引用: 1]
There has been great interest in the use of carbon nano-materials (CNMs) in agriculture. However, the existing literature reveals mixed effects from CNM exposure on plants, ranging from enhanced crop yield to acute cytotoxicity and genetic alteration. These seemingly inconsistent research-outcomes, taken with the current technological limitations forin situCNM detection, present significant hurdles to the wide scale use of CNMs in agriculture. The objective of this review is to evaluate the current literature, including studies with both positive and negative effects of different CNMs (e.g., carbon nano-tubes, fullerenes, carbon nanoparticles, and carbon nano-horns, among others) on terrestrial plants and associated soil-dwelling microbes. The effects of CNMs on the uptake of various co-contaminants will also be discussed. Last, we highlight critical knowledge gaps, including the need for more soil-based investigations under environmentally relevant conditions. In addition, efforts need to be focused on better understanding of the underlying mechanism of CNM-plant interactions.
,
[本文引用: 1]
[本文引用: 1]
, 2012(
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1038/nmat3890URLPMID:24633343Magsci [本文引用: 1]
The interface between plant organelles and non-biological nanostructures has the potential to impart organelles with new and enhanced functions. Here, we show that single-walled carbon nanotubes (SWNTs) passively transport and irreversibly localize within the lipid envelope of extracted plant chloroplasts, promote over three times higher photosynthetic activity than that of controls, and enhance maximum electron transport rates. The SWNT-chloroplast assemblies also enable higher rates of leaf electron transport in vivo through a mechanism consistent with augmented photoabsorption. Concentrations of reactive oxygen species inside extracted chloroplasts are significantly suppressed by delivering poly(acrylic acid)-nanoceria or SWNT-nanoceria complexes. Moreover, we show that SWNTs enable near-infrared fluorescence monitoring of nitric oxide both ex vivo and in vivo, thus demonstrating that a plant can be augmented to function as a photonic chemical sensor. Nanobionics engineering of plant function may contribute to the development of biomimetic materials for light-harvesting and biochemical detection with regenerative properties and enhanced efficiency.
,
DOI:10.1021/nl803083uURLPMID:19191500 [本文引用: 1]
Abstract We have investigated the capability of single-walled carbon nanotubes (SWNTs) to penetrate the cell wall and cell membrane of intact plant cells. Confocal fluorescence images revealed the cellular uptake of both SWNT/fluorescein isothiocyanate and SWNT/DNA conjugates, demonstrating that SWNTs also hold great promise as nanotransporters for walled plant cells. Moreover, the result suggested that SWNTs could deliver different cargoes into different plant cell organelles.
,
DOI:10.1039/c2ib00135gURLPMID:22266482Magsci [本文引用: 1]
Since their discovery, carbon nanotubes (CNTs) have been eminent members of the nanomaterial family. Because of their unique physical, chemical and mechanical properties, they are regarded as new potential materials to bring enormous benefits in cell biology studies. Undoubtedly, the first step to prove the advantages of CNTs is to understand the basic behavior of CNTs inside the cells. In a number of studies, CNTs have been demonstrated as new carrier systems for the delivery of DNA, proteins and therapeutic molecules into living cells. However, post-uptake behavior of CNTs inside the cells has not received much consideration. Utilizing the plant cell model, we have shown in this study that the plant cells, differentiating into tracheary elements, incorporate cup-stacked carbon nanotubes (CSCNTs) into cell structureviaoxidative cross-linking of monolignols to the nanotubes surface during lignin biosynthesis. This finding highlights the fate of CNTs inside plant cells and provides an example on how the plant cell can handle internalized carbon nanomaterials.
,
DOI:10.1021/nn302965wURLPMID:19772305 [本文引用: 1]
Abstract Carbon nanotubes (CNTs) were found to penetrate tomato seeds and affect their germination and growth rates. The germination was found to be dramatically higher for seeds that germinated on medium containing CNTs (10-40 mug/mL) compared to control. Analytical methods indicated that the CNTs are able to penetrate the thick seed coat and support water uptake inside seeds, a process which can affect seed germination and growth of tomato seedlings.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]