 二维码(扫一下试试看!) | VTC-KSVD:一种融合视觉特征与标签一致性的多标签图像标注方法 | VTC-KSVD,a New Multi-Label Image Annotation Method Combining Visual Features with Tag Consistency | 投稿时间:2019-05-16 | DOI:10.15918/j.tbit1001-0645.2019.153 | 中文关键词:图像标注KSVD视觉特征标签一致性 | English Keywords:image annotationKSVDvisual featurestag consistency | 基金项目:中国青年科学基金资助项目(61702413);中国航天九院技术创新基金资助项目(2016JY06) | | 摘要点击次数:818 | 全文下载次数:261 | 中文摘要: | 提出一种融合视觉特征及标签一致性的多标签图像标注方法VTC-KSVD.首先通过K均值奇异值分解(KSVD)法建立图像的标签一致性模型TC-KSVD,然后将多视图特征融合在该模型中.该方法既利用了训练样本的类标与编码系数的判别式模型,又利用了训练样本的标签与编码系数的关系,增加了字典的判别性,提高了标注性能.在Corel5K数据集上的实验结果表明,融合了多视图视觉特征与标签一致性的VTC-KSVD方法可以较为准确地找到视觉特征与语义特征均相似的图像近邻,能明显提升多标签图像的标注性能,并能有效缓解训练数据有限而引起的稀疏性问题. | English Summary: | A new method for multi-label image annotation was proposed based on the combination of visual features and tag consistency. Firstly, a tag consistency model TC-KSVD was established for the training images using the KSVD method. In order to further improve the annotation accuracy, multi-view visual features were incorporated into the model. This method was arranged not only to utilize the discriminant model of the training samples ’item labels and coding coefficients, but also to utilize the relationship between tags and the coding coefficients, so as to increase the discriminability of the dictionary and improve the annotation performance. The experimental results on the Corel5K datasets show that, the VTC-KSVD method with multi-view visual features and tag consistency can accurately find the neighbors with similar visual features and semantic features, which can significantly improve the annotation accuracy and can effectively alleviate the sparsity problem caused by limited training data. | 查看全文查看/发表评论下载PDF阅读器 | |
朱明,焦会敏,赵兴运,杨晶琨.一种基于图像细节保持的空间色域映射算法框架[J].北京理工大学学报(自然科学版),2020,40(3):290~297.ZHUMing,JIAOHui-min,ZHAOXing-yun,YANGJing-kun.ASpatialGamutMappingFramework ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21吴一全,谢芬.基于对比度Harris的快速鲁棒图像配准算法[J].北京理工大学学报(自然科学版),2020,40(3):316~324.WUYi-quan,XIEFen.AFastandRobustImageRegistrationAlgorithmBasedonContrastHarris[J]. ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘刘,姬晓慧,郝自清,曲宏亮,贺体人.数字图像相关技术在多孔气凝胶基复合材料弹性力学常数识别中的应用[J].北京理工大学学报(自然科学版),2020,40(10):1033~1042.LIULiu,JIXiao-hui,HAOZi-qing,QUHong-liang,HETi-ren.Identif ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王洪枫,王建中,白柯萌,张晟.瞳孔检测的图像裁剪与异常瞳孔排除[J].北京理工大学学报(自然科学版),2020,40(10):1111~1118.WANGHong-feng,WANGJian-zhong,BAIKe-meng,ZHANGSheng.ImageCroppingandAbnormalPu ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21黄承,钱振兴,张新鹏.一种新型的基于图像哈希的无载体隐写方案[J].北京理工大学学报(自然科学版),2020,40(12):1302~1306,1313.HUANGCheng,QIANZhen-xing,ZHANGXin-peng.ANovelCoverlessSteganographyMethod ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21高飞,赵洁琼,林翀,陈浩然.基于距离度量学习的SAR图像识别方法[J].北京理工大学学报(自然科学版),2021,41(3):334~340.GAOFei,ZHAOJieqiong,LINChong,CHENHaoran.ASARImageRecognitionMethodBasedonDistan ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张栩培,贺占庄,马钟,杨一岱.一种自标签特征点异源图像目标检测算法[J].北京理工大学学报(自然科学版),2021,41(5):558~568.ZHANGXupei,HEZhanzhuang,MAZhong,YANGYidai.ASelf-LabelingFeatureMatchingAlgorit ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21马啸,邵利民,金鑫,卢惠民,肖军浩,谷东亮.基于改进MaskR-CNN的可见光图像中舰船目标检测方法[J].北京理工大学学报(自然科学版),2021,41(7):734~744.MAXiao,SHAOLimin,JINXin,LUHuimin,XIAOJunhao,GUDongliang.ShipT ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21周治国,刘开元,郑翼鹏,屈崇,王黎明.一种基于深度学习的高速无人艇视觉检测实时算法[J].北京理工大学学报(自然科学版),2021,41(7):758~764.ZHOUZhiguo,LIUKaiyuan,ZHENGYipeng,QUChong,WANGLiming.AReal-TimeAlgorit ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈越洋,何行宽,李晨瑶.基于Retinex理论的电子内镜图像增强算法[J].北京理工大学学报(自然科学版),2021,41(9):985~989.CHENYueyang,HEXingkuan,LIChenyao.EndoscopicImageEnhancementBasedonRetinexTheo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |