二维码(扫一下试试看!) | 基于对比度Harris的快速鲁棒图像配准算法 | A Fast and Robust Image Registration Algorithm Based on Contrast Harris | 投稿时间:2018-03-05 | DOI:10.15918/j.tbit1001-0645.2018.094 | 中文关键词:图像配准Harris角点检测对比度随机抽样一致性 | English Keywords:image registrationHarris corner detectioncontrastrandom sample consensus | 基金项目:国家自然科学基金资助项目(61573183);国土资源部成矿作用与资源评价重点实验室开放基金项目(ZS1406);成都理工大学国土资源部地学空间信息技术重点实验室开放基金项目(KLGSIT2015-05);兰州大学甘肃省西部矿产资源重点实验室开放基金项目(WCRMGS-2014-05) | | 摘要点击次数:861 | 全文下载次数:429 | 中文摘要: | 为进一步提高配准算法的鲁棒性、速度及自适应程度,提出了一种基于对比度Harris的快速鲁棒图像配准算法.依据中心像素与其邻域像素灰度值差异计算分块图像对比度,自适应地确定其角点检测的阈值,并通过灰度相似性剔除伪角点;在构建的尺度空间中检测角点,解决了Harris算法需凭经验手动设定阈值,所提取的角点分布不均匀,对尺度敏感且含有伪角点的问题;采用斜率和距离约束剔除粗匹配后的部分误配准点对,再通过随机抽样一致性(random sample consensus,RANSAC)进行精配准.实验结果表明,与4种同类配准算法相比,所提出的配准算法对于JPEG压缩、模糊、视角、光照及尺度变化图像都具有更好的鲁棒性,配准正确率更高,自适应性更强,且配准时间大幅减少. | English Summary: | In order to further improve the robustness, speed and adaptability of the image registration algorithm, a fast and robust image registration algorithm based on contrast Harris was proposed. Firstly, the contrast of the block image was calculated according to the difference of the gray value between the central pixel and its neighborhood pixels, and the threshold of the corner detection was determined adaptively. The pseudo corner points were removed by the gray similarity. Then the corner points were detected in the constructed scale space. As a result, the problems were solved, such as scale sensitive of corner points extracted with Harris algorithm, manual setting of threshold, existence of pseudo corner points, uneven distribution. Finally, the partial mismatched pairs of matched points were removed by slope and distance constraint and the matched pairs were finely aligned by random sample consensus. The experimental results show that, compared with four registration algorithms, the proposed registration algorithm possesses better robustness to JPEG compression, blurred images, visual angle, illumination, rotation and scale changes. The accuracy of registration is higher, the degree of adaptation is stronger and the time of registration can be reduced significantly. | 查看全文查看/发表评论下载PDF阅读器 | |
张扬,甘庆波,傅江良,李子申,袁洪,熊瑶.GEO空间慢旋目标天基监视受控绕飞轨道设计与仿真[J].北京理工大学学报(自然科学版),2020,40(4):441~447.ZHANGYang,GANQing-bo,FUJiang-liang,LIZi-shen,YUANHong,XIONGYao.Tra ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘刘,姬晓慧,郝自清,曲宏亮,贺体人.数字图像相关技术在多孔气凝胶基复合材料弹性力学常数识别中的应用[J].北京理工大学学报(自然科学版),2020,40(10):1033~1042.LIULiu,JIXiao-hui,HAOZi-qing,QUHong-liang,HETi-ren.Identif ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王洪枫,王建中,白柯萌,张晟.瞳孔检测的图像裁剪与异常瞳孔排除[J].北京理工大学学报(自然科学版),2020,40(10):1111~1118.WANGHong-feng,WANGJian-zhong,BAIKe-meng,ZHANGSheng.ImageCroppingandAbnormalPu ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王卫江,蔡雪滢,王佳童.变换域函数空间下周期非均匀积分与重构方法[J].北京理工大学学报(自然科学版),2020,40(11):1238~1244.WANGWei-jiang,CAIXue-ying,WANGJia-tong.PeriodicallyNonuniformAveragingandRec ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21黄承,钱振兴,张新鹏.一种新型的基于图像哈希的无载体隐写方案[J].北京理工大学学报(自然科学版),2020,40(12):1302~1306,1313.HUANGCheng,QIANZhen-xing,ZHANGXin-peng.ANovelCoverlessSteganographyMethod ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21孙希彤,罗兴柏,高敏,吕静,陈浩.中末制导交班空间边界建立及影响因素分析[J].北京理工大学学报(自然科学版),2020,40(12):1321~1331,1355.SUNXi-tong,LUOXing-bai,GAOMin,LüJing,CHENHao.BoundaryEstablishmenta ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王汉平,张哲,张宝振.二维不平度路面的空间域滤波重构及仿真[J].北京理工大学学报(自然科学版),2021,41(1):48~52.WANGHanping,ZHANGZhe,ZHANGBaozhen.SpatialDomainReconstructionofRoadRoughnessBasedonW ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21高飞,赵洁琼,林翀,陈浩然.基于距离度量学习的SAR图像识别方法[J].北京理工大学学报(自然科学版),2021,41(3):334~340.GAOFei,ZHAOJieqiong,LINChong,CHENHaoran.ASARImageRecognitionMethodBasedonDistan ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张栩培,贺占庄,马钟,杨一岱.一种自标签特征点异源图像目标检测算法[J].北京理工大学学报(自然科学版),2021,41(5):558~568.ZHANGXupei,HEZhanzhuang,MAZhong,YANGYidai.ASelf-LabelingFeatureMatchingAlgorit ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21马啸,邵利民,金鑫,卢惠民,肖军浩,谷东亮.基于改进MaskR-CNN的可见光图像中舰船目标检测方法[J].北京理工大学学报(自然科学版),2021,41(7):734~744.MAXiao,SHAOLimin,JINXin,LUHuimin,XIAOJunhao,GUDongliang.ShipT ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |