删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于距离度量学习的SAR图像识别方法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于距离度量学习的SAR图像识别方法
A SAR Image Recognition Method Based on Distance Metric Learning
投稿时间:2019-12-06
DOI:10.15918/j.tbit1001-0645.2019.301
中文关键词:合成孔径雷达度量学习图像识别
English Keywords:synthetic aperture radar(SAR)metric learningimage recognition
基金项目:
作者单位
高飞北京理工大学 信息与电子学院, 北京 100081
赵洁琼北京理工大学 信息与电子学院, 北京 100081
林翀北京理工大学 信息与电子学院, 北京 100081
陈浩然北京理工大学 信息与电子学院, 北京 100081
摘要点击次数:615
全文下载次数:303
中文摘要:
针对合成孔径雷达(synthetic aperture radar,SAR)图像样本数据有限,且不同类别间的图像区分度不高导致识别困难的问题,提出一种应用于SAR图像识别的距离度量学习方法.该方法使用CNN网络得到图像的特征分布,利用LSTM网络加强图像间的关联性,基于余弦相似距离度量方法计算图像之间的匹配度,通过注意力机制后对结果进行分类.训练过程结合小样本学习的训练方式,采取预训练的策略进行实验.实验以公开的MSTAR数据集进行SAR图像识别,结果表明该方法准确率达到99.3%,比SVM方法提升2.5%.
English Summary:
Due to synthetic aperture radar (SAR) image sample data is insufficient,and the similarity of intra-class images,which causes difficulty in recognition. A distance metric learning method was proposed for SAR image recognition. The method was arranged to use CNN networks to obtain the feature distribution of the image,and use the LSTM networks to strengthen the correlation between images. Based on the cosine similarity distance measurement method,the matching degree between images was calculated,and the results were classified based on the attention mechanism. Combined with the training method of few-shot learning,the training experiments were carried out with pre-training strategies and using the public MSTAR data set to perform SAR image recognition. The results show that the recognition rate of the method can reach up to 99.3%,be 2.5% higher than SVM.
查看全文查看/发表评论下载PDF阅读器
相关话题/图像 信息 北京理工大学 电子 北京