删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于LSTM的钓鱼邮件检测系统

本站小编 Free考研考试/2021-12-21

闁绘劗鎳撻崵顔剧博鐎n亜绁柟鍏肩矌閸岋拷2濞戞挸娲ㄩ~鎺楁嚀閸愵亞鍩¢柣銏ゆ涧閻℃瑩鎮ч崼锝囥偒闁哄倹鐟辩槐锟�
濠㈠爢鍥у姤闁告帒妫涢銏ゆ鐎n喖鍘撮柡鍕靛灣椤戝洦绋夐埀顒€鈻庨檱閳ь剙鍟伴悥娲晬鐏炵瓔鍤犲ù婊冮椤┭勬媴閺囩喓鍙€闁归潧褰炵粭鎾寸▔濮樻剚鍤﹂柟绋挎搐閻i箖寮▎鎰稄闁挎稑鏈崹銊ф媼閸涘﹥绠掔€垫澘鐗嗛ˇ鍧楁偪閹达附锛栭柕鍡曞ree濠㈠綊鈧稒銆冮柛鎺戞椤掔喐绋婇悩鐢电Ч闁兼澘鍟伴悥鍝勄庢潏顐熷亾閺囨氨鐟╁☉鎾翠亢椤曡櫕娼忛崨顓у殼20妤犵偠鎻槐婵嬪箑閼姐倗娉㈠ù婊冩缁夊鈧湱鍋熼弫銈夋儍閸曨剙鐦归悗瑙勭閺嗏偓闁哄鍔栭悡锛勬嫚閵忊剝鐓欐繛澶嬫礀瀵攱寰勫鍕槑闁哄倽顫夌涵鍫曟晬鐏炵偓绠掗梻鍥e亾閻熸洑鑳跺▓鎴︽儑鐎n厾绠栭柡澶涙嫹
本文二维码信息
二维码(扫一下试试看!)
基于LSTM的钓鱼邮件检测系统
Phishing Mail Detection System Based on LSTM Neural Network
投稿时间:2019-10-17
DOI:10.15918/j.tbit1001-0645.2019.262
中文关键词:钓鱼邮件深度学习LSTM神经网络
English Keywords:phishing emaildeep learninglong short-term memory (LSTM) neural network
基金项目:国家协同创新专项课题资助项目(2016QY06X1205)
摘要点击次数:668
全文下载次数:293
中文摘要:
提出了一种基于LSTM的钓鱼邮件检测方式.该方式主要由两部分构成:分别为数据扩充部分及模型训练部分.数据扩展部分中,通过KNN与K-means算法扩大训练数据集,保证数据的数量能够满足深度学习算法的需要.在模型训练部分中,通过对数据进行预处理并将其转化为词向量矩阵,最后将转化完词向量通过训练得到LSTM神经网络模型.最终,可以根据训练好的LSTM模型将邮件分为正常邮件以及钓鱼邮件.通过实验对提出的算法进行了评估,实验结果显示提出的算法准确率可以达到95%.
English Summary:
A long short-term memory (LSTM)-based phishing email detection method was proposed.This method was arranged mainly with two parts:data expansion part and model training part.In the data extension part, KNN and K-means algorithms were used to extend the training data set to make the number of data sets capable support deep learning algorithms. In the model training part,the data were preprocessed and transformed into a word vector matrix.And then the word vector matrix was trained to form LSTM neural network model.Finally,the mail can be divided into normal mail and phishing mail according to the trained LSTM model.Experiments were carried out to evaluate the proposed algorithm.The experimental results show that the proposed algorithm can achieve the accuracy up to 95%.
查看全文查看/发表评论下载PDF阅读器
相关话题/数据 空间 实验 中文 北京邮电大学

闁归潧顑嗗┃鈧煫鍥跺亰閳ь剛鍠庨崢銈囨嫻鐟欏嫭鏆堥柛鎰缁变即宕ㄩ敓锟�闁挎稑鐬奸悵娑㈠础鐎圭姴绠柛娆愮墬濠€鎵博濞嗘帞銈柡鍌涚懆琚欓柛妯侯儑缂傚鈧潧妫涢悥婊堟晬閿燂拷