 二维码(扫一下试试看!) | 融合样本相似性的弱监督多标签分类 | Weakly Supervised Multilabel Classification Combining Sample Similarity | 投稿时间:2020-07-21 | DOI:10.15918/j.tbit1001-0645.2020.117 | 中文关键词:多标签分类标签残缺样本相似性 | English Keywords:multilabel classificationincomplete labelssample similarity | 基金项目:国家"十三五"科技支撑计划项目(SQ2018YFC200004) | | 摘要点击次数:389 | 全文下载次数:213 | 中文摘要: | 针对面向实际应用场景中数据标签易残缺导致有监督多标签分类方法可用训练数据量减少,未能利用大量标签缺失数据中蕴含的样本特征空间关联知识以最大化判别间隔,限制多标签分类效果等问题,本文提出一种融合样本相似性的弱监督多标签分类方法.该方法利用标签相关性和样本相似性恢复标签以提高数据利用率,并将标签恢复嵌入到训练过程中以便挖掘标签相关性,通过近端加速梯度法进行参数优化,建立弱监督学习场景的多标签分类模型.在真实数据集上的实验结果表明,该方法能够利用样本相似性有效提升模型在标签残缺时的分类能力,实用价值大. | English Summary: | Multilabel classification is a machine learning method to improve the performance of multi label joint decision by label correlation. In practical application scenarios, data labels are easy to be incomplete, which can lead to the reduction of available training data, and it is difficult to train the model adequately. Moreover, it is easy to cause the increase of label distribution variance, the deviation of correlation knowledge, and the limitation of multi label classification effect. To solve the problems, a weak supervised multi label classification method based on sample similarity was proposed. The method was arranged to use label correlation and sample similarity to recover labels to improve data utilization, and to embed label recovery into the training process to correct the bias in the model learning process. Based on the proximal accelerated gradient method, parameter optimization was carried out, and a multi label classification model was established for weak supervised learning scene. Experiments were completed with real data set. The results show that the method can effectively improve the classification ability of the model for the incomplete labels according to the similarity of samples, possessing high practical value. | 查看全文查看/发表评论下载PDF阅读器 | |
孙一博,孟秀云,邱文杰.基于表格形气动数据的滑翔飞行器轨迹优化[J].北京理工大学学报(自然科学版),2021,41(8):820~829,839.SUNYibo,MENGXiuyun,QIUWenjie.TrajectoryOptimizationofGlideVehiclesBasedonTab ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21李娟莉,李梦辉,谢嘉成,王学文,张鑫.分布式实时运行数据驱动的液压支架群虚拟监测关键技术[J].北京理工大学学报(自然科学版),2021,41(10):1023~1033.LIJuanli,LIMenghui,XIEJiacheng,WANGXuewen,ZHANGXin.KeyTechnologi ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21许彤,陈亚洲,王玉明,赵敏.无人机数据链带内连续波电磁干扰效应研究[J].北京理工大学学报(自然科学版),2021,41(10):1084~1094.XUTong,CHENYazhou,WANGYuming,ZHAOMin.ResearchonIn-BandContinuousWaveElectro ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21曾祥,刘彦,许泽建,黄风雷.爆炸载荷作用下玻璃钢/硬质聚氨酯泡沫夹层结构抗冲击性能实验研究[J].北京理工大学学报(自然科学版),2021,41(11):1145~1153.ZENGXiang,LIUYan,XUZejian,HUANGFenglei.ExperimentalStudyonImpac ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21焦龙龙,罗森林,曹伟,潘丽敏,张笈.变异策略动态构建的模糊测试数据生成方法[J].北京理工大学学报(自然科学版),2019,39(5):539~544.JIAOLong-long,LUOSen-lin,CAOWei,PANLi-min,ZHANGJi.FuzzingTestDataGeneratio ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21钟巍,寿列枫,王仲琦,田宙,刘俊,何增,李伟昌.PVB夹层钢化玻璃冲击波毁伤效应实验研究[J].北京理工大学学报(自然科学版),2019,39(6):565~570.ZHONGWei,SHOULie-feng,WANGZhong-qi,TIANZhou,LIUJun,HEZeng,LIWei-cha ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21胡奥婷,胡爱群.基于CP-ABE的自定义读写策略的云数据共享方案[J].北京理工大学学报(自然科学版),2019,39(7):719~724.HUAo-ting,HUAi-qun.CP-ABEBasedDataSharingSchemeSupportingSeparatingRead/WritePe ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21由育阳,由书凯,高健凯,杨志宏.基于正态逆高斯和特征贡献度的睡眠分期实验研究[J].北京理工大学学报(自然科学版),2019,39(8):833~838.YOUYu-yang,YOUShu-kai,GAOJian-kai,YANGZhi-hong.ExperimentalStudyonSleepSt ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21任会兰,安刚,郝莉,王宗炼.铝合金PLC效应与声发射特性的实验研究[J].北京理工大学学报(自然科学版),2019,39(10):999~1005.RENHui-lan,ANGang,HAOLi,WANGZong-lian.ExperimentalStudyonPLCEffectandAcousti ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21余斌,李晓风,赵赫.基于区块链存储扩展的结构化数据管理方法[J].北京理工大学学报(自然科学版),2019,39(11):1160~1166.YUBin,LIXiao-feng,ZHAOHe.StructuredDataManagementMethodBasedonScalableBlockchai ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
|