删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

融合样本相似性的弱监督多标签分类

本站小编 Free考研考试/2021-12-21

閻庢鍠掗崑鎾绘⒑椤愶絿顣叉繝鈧幍顔惧崥婵顦糚闂佹寧绋掗惌顔剧博鐎涙ḿ鈻旈柛銉㈡櫓濞兼岸鏌ら弶鍨殶闁绘牜鍎ょ粙澶愬箻閼碱剛鎳濋柣鐘叉处瀹曟﹢锝炵€n偓绱i柟杈鹃檮椤撶懓銆掑铏《婵犫偓閸涘瓨鏅悘鐐插⒔濡层劑鏌¢崼顐㈠幐缂佹顦靛畷姘紣娴d警浼囬梺鍛婂笒濡繈骞愰崼鏇熸櫖濞达綀娅i崡婊堟倵閻㈠灚鍤€闁搞劍绻勭划璇参旂€n剛锛�
547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤€閰i幊鎾诲礃椤忓棗鐓涢梺鍏兼緲閸燁偄鐣烽敓锟�1130缂備礁顦粔鐢碘偓鍨皑閳ь剝顫夌喊宥夊汲閳ь剟鏌℃径瀣婵炲牊鍨垮畷锟犲礃瑜忕粙鍥╃磼婢跺﹦效闁告ǜ鍊栫缓钘壩旈崪浣规瘜闁圭厧鐡ㄩ幐鍫曞焵椤戞寧绁版い顐㈩儐閿涙劙骞嬮婊咁槷濠电偞鍨归弫绋棵烘繝鍥ㄥ殣閺夊牜鍋掗崵鏃堟煏閸℃洝鍏岀紒顔光偓瓒佽鎯斿☉鎺戜壕濞达絿鏅Σ鍫ユ煕閹烘挻鍋犻柍褜鍏涚欢姘跺闯妤e啯鎳氱€广儱鍟犻崑鎾存媴閻戞ê鈧偟鈧鎮堕崕顖炲焵椤戣儻鍏屾い鎾存倐閹爼宕遍幇銊ヤ壕濞达絾浜芥禒锕€霉閸忕厧鎼搁柍褜鍏涘ù鍥磼閵婏箑顕辨慨妯稿劗閸嬫挻鎷呯憴鍕暚闂佺厧寮惰ぐ鍐紦妤e啯鍋犻柛鈩冨姀閸嬫挻鎷呴悿顖氬箑闂佸搫鍊稿ú銏ゅ焵椤戞寧绁板瑙勬崌瀵敻顢涘Ο宄颁壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾村閸嬫挻鎷呴崷顓溾偓濠囨倵濞戝疇绀嬮柍褜鍏涚粈浣轰焊閹殿喒鍋撳☉瀹犵闁逞屽厸濞村洭顢橀崫銉т笉婵°倓鐒︾花姘舵煏閸℃洜顦︾€圭ǹ顭峰畷锝囦沪閸屾浜惧ù锝呮啞閸曢箖鏌i悙鍙夘棑闁逞屽厸閻掞箓寮崒姘f煢婵懓娲犻崑鎾存媴閸涘﹥鍣搁柣搴㈠喕鐠愮喖鍩€椤戞寧顦风紓宥咁儔閹虫牠鎳犻鍐炬蕉缂備焦鍐婚幏锟�28缂備緡鍋夐褔顢楅悢铏圭煋闁规惌鍨崇壕锟�
本文二维码信息
二维码(扫一下试试看!)
融合样本相似性的弱监督多标签分类
Weakly Supervised Multilabel Classification Combining Sample Similarity
投稿时间:2020-07-21
DOI:10.15918/j.tbit1001-0645.2020.117
中文关键词:多标签分类标签残缺样本相似性
English Keywords:multilabel classificationincomplete labelssample similarity
基金项目:国家"十三五"科技支撑计划项目(SQ2018YFC200004)
摘要点击次数:389
全文下载次数:213
中文摘要:
针对面向实际应用场景中数据标签易残缺导致有监督多标签分类方法可用训练数据量减少,未能利用大量标签缺失数据中蕴含的样本特征空间关联知识以最大化判别间隔,限制多标签分类效果等问题,本文提出一种融合样本相似性的弱监督多标签分类方法.该方法利用标签相关性和样本相似性恢复标签以提高数据利用率,并将标签恢复嵌入到训练过程中以便挖掘标签相关性,通过近端加速梯度法进行参数优化,建立弱监督学习场景的多标签分类模型.在真实数据集上的实验结果表明,该方法能够利用样本相似性有效提升模型在标签残缺时的分类能力,实用价值大.
English Summary:
Multilabel classification is a machine learning method to improve the performance of multi label joint decision by label correlation. In practical application scenarios, data labels are easy to be incomplete, which can lead to the reduction of available training data, and it is difficult to train the model adequately. Moreover, it is easy to cause the increase of label distribution variance, the deviation of correlation knowledge, and the limitation of multi label classification effect. To solve the problems, a weak supervised multi label classification method based on sample similarity was proposed. The method was arranged to use label correlation and sample similarity to recover labels to improve data utilization, and to embed label recovery into the training process to correct the bias in the model learning process. Based on the proximal accelerated gradient method, parameter optimization was carried out, and a multi label classification model was established for weak supervised learning scene. Experiments were completed with real data set. The results show that the method can effectively improve the classification ability of the model for the incomplete labels according to the similarity of samples, possessing high practical value.
查看全文查看/发表评论下载PDF阅读器
闂佺粯鍔楅幊鎾诲吹椤斿墽鍗氶悗锝庝簻缁侇噣鏌熼崗鑲╃煂闁稿矉鎷�2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煟閵忋倖娑ч柣鈩冪懇閹囧醇閿濆洢鍋掗梺鍝勫€归悷杈╂閿燂拷
婵犮垹鐖㈤崶褍濮ら梺鍛婂笒濡盯顢旈姀銈嗩棄閻庯綆鍠栭崢鎾煛閸曢潧鐏fい鎴濇处缁嬪鍩€椤掆偓閳诲酣妾遍柍褜鍓欓崯浼存偉濞差亝鏅悘鐐电摂閸ょ姴霉濠婂啴顎楁い鈹嫭濯撮柡鍥╁枔閸欌偓闂佸綊娼цぐ鐐电箔閹惧鈻旀慨妯诲墯閸わ箓鏌熺粙鎸庢悙闁伙綁绠栧顐⑩枎閹邦厾绋勯梺鎸庣☉閺堫剟宕归妸褎濯奸柛娑橈攻缁犳帞鈧灚婢橀悧鍡浰囬崸妤佸仾闁硅揪闄勯敍鏍煏閸℃洖顣╮ee婵犮垹缍婇埀顒佺⊕閵嗗啴鏌涢幒鎴烆棞妞ゆ帞鍠愮粙濠囨偐閻㈢數效闂佸吋婢橀崯浼存偉閸濆媱搴㈡綇椤愮喎浜鹃柡鍥ㄦ皑閻熲晛鈽夐幘缈犱孩妞ゆ洝娅曞ḿ蹇涘川椤撗冩20濡ょ姷鍋犻幓顏嗘濠靛绠戦柤濮愬€楀▔銏犆瑰⿰鍐╊棥缂佸顕埀顒€婀遍崑鐔煎极閵堝鍎嶉柛鏇ㄥ墮閻﹀綊鎮楃憴鍕暡闁哄棌鍋撻梺鍝勵槹閸旀牠鎮¢敍鍕珰闁靛繆鍓濋悡娆愮箾婢跺绀€鐎殿噣鏀卞鍕吋閸曨厾妲戦梺鍝勫€介~澶屾兜閸洘鏅悘鐐靛亾缁犳帡姊婚崶锝呬壕闁荤喐娲戦懗璺衡枔閹达附鍎戦悗锝庡幘缁犳牠鏌℃径娑欏
相关话题/北京 实验 北京理工大学 数据 交通

婵炴垶鎸撮崑鎾绘煛婢舵ê鐏犻柕鍫濈埣閹崇娀宕滄担鍦殸闂備浇妫勫畷顒€顫濋妸鈺佺煑妞ゆ牗鐟ょ花鏉库槈閺冣偓濠㈡﹢宕哄畝鍕殌闁告劦浜為崺鈥斥槈閹惧瓨灏紒妤冨枔閹风娀骞戦幇顔哄亽闂佸搫鍊归悷杈╂閿燂拷
2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煟閵忋倖娑ч柣鈩冪懄缁嬪﹪鏁傞懖鈺冾槱婵☆偆澧楅敋缂併劑浜舵俊瀛樻媴缁涘缍婃俊顐ゅ閸垶鍩€椤戣法顦﹂柛娆忕箲缁鸿棄螖閸曨厹鍋掗梺鍝勫€归悷杈╂濮樿泛鐭楀┑鐘插€搁崸濠冾殽閻愬樊鍤熸繝鈧埄鍐跨矗婵鐗忕粈澶嬬箾閹寸姵鏆╂繛璇ф嫹547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤嬫嫹4婵炴垶鎸稿ú锝囩礊閹寸偟鈻旀い蹇撴礌閸嬫捇宕橀鍡楃厸闂佸吋婢橀崯顐㈢暦閵夛妇鈻旈柟鎹愬皺閻熷湱绱掓径瀣仼婵炶弓鍗虫俊瀛樻媴鐟欙絽浜鹃柛鎰典簽閸╋繝鏌涜箛锝呭闁告瑱绱曢幏鐘诲箻閸涱垳顦╅梺琛″亾闁圭ǹ绨肩粭澶愭煠閺勫繒绨挎い鏇樺灲瀵偊寮跺▎鎯уΤ闂佹寧绋戦ˇ顓㈠焵椤掑﹥瀚�40缂備礁顦粔宕囩箔閹惧鈻旀慨姗€纭搁弫瀣熆鐠団€充壕缂佽鲸鐟╅弻宀勫箣閿濆洠鍋撻搹瑙勫厹闁哄洨鍎戠槐婊堟煏閸℃洖绨籅A闂侀潧妫旂粈浣该瑰Δ鍛挃闁告侗鍘藉▍宀勬煕閺冩挾纾挎い銏$缁旂喖顢曢悩顐壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾跺閺佸顭跨拠鈥充簴闁逞屽厸閼冲爼濡甸悙鏉戭嚤婵﹩鍏涚槐锝吤归敐鍡欑煂妞ゃ垺纰嶇粩鐔碱敃閵堝洦鎯i梺鎸庣☉椤︻參鍩€椤掑﹥瀚�28缂備緡鍋夐褔骞冮幘鍓侀┏濠㈣泛饪撮崝鍛存煕閺冣偓缁嬫捇寮悽鍨厹闁哄洦姘ㄩ悷鈺佲槈閹炬潙鎼搁柍褜鍓ㄩ幏锟�1130缂備礁顦粔鍓佸垝閿熺姴绀傞柛娑橈攻濞堝矂鏌℃径瀣闁逞屽墾閹凤拷