删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于正态逆高斯和特征贡献度的睡眠分期实验研究

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于正态逆高斯和特征贡献度的睡眠分期实验研究
Experimental Study on Sleep Stages Based on Normal Inverse Gaussian and Characteristic Contribution
投稿时间:2018-11-27
DOI:10.15918/j.tbit1001-0645.2019.08.010
中文关键词:睡眠分期正态逆高斯特征贡献度多分类器组合
English Keywords:sleep stagingnormal inverse Gaussianfeature contributionmulti-classifier combination
基金项目:国家自然科学基金资助项目(81473579,81273654);北京理工大学基础研究基金资助项目(20140642006)
作者单位E-mail
由育阳北京理工大学 自动化学院, 北京 100081
由书凯北京理工大学 自动化学院, 北京 100081
高健凯北京理工大学 自动化学院, 北京 100081
杨志宏中国医学科学院 药用植物研究所, 北京 100193zhyang@implad.ac.cn
摘要点击次数:717
全文下载次数:291
中文摘要:
针对自动睡眠分期任务,提出了一种基于正态逆高斯和特征贡献度的睡眠分期实验框架.提取睡眠脑电信号特征,并对信号进行可调Q因子小波分解(TQWT),针对TQWT子带提取正态逆高斯参数特征;基于SVM模型实现特征贡献度排序与筛选,针对高贡献度特征,比较多种分类器的分期结果并设计多分类器组合自动睡眠分期算法.采用PhysioBank的Sleep-EDF数据集进行验证,取得了89.88%的平均睡眠分期准确率,相较于单一分类器的分期准确率有较大提升,对睡眠障碍的临床诊断与研究具有较大价值.
English Summary:
An experimental framework based on normal inverse Gaussian and feature contribution was proposed for automatic classification of sleep stages. Features were extracted from the sleep EEG (electroencephalo-graph) signals. The signals were decomposed by tunable Q-factor wavelet transform (TQWT). The normal inverse Gaussian parameters were extracted from the TQWT sub-bands. The important features were selected and ranked according to the contribution degree based on the SVM model; according as the selected features of high contribution, the results of different classifiers were compared afterwards. A multi-classifier based automatic sleep staging algorithm was then designed. Results show that, the accuracy of sleep staging can reach 89.88% according to the validation on sleep-EDF dataset from PhysioBank. Compared with the single classifiers, the accuracy of staging can be improved greatly. Therefore, the proposed method is of great value for the clinical diagnosis and researches of sleep disorders.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 北京理工大学 自动化 研究所 中文