二维码(扫一下试试看!) | 面向一类混合退化装备RUL预测的平行仿真技术 | RUL Prediction Oriented Parallel Simulation Technology for Hybrid Degradation Equipment | 投稿时间:2018-01-03 | DOI:10.15918/j.tbit1001-0645.2019.04.011 | 中文关键词:平行仿真模型演化剩余寿命模型选择混合退化 | English Keywords:parallel simulationmodel evolutionremaining useful lifemodel selectionhybrid degradation | 基金项目:国家部委预研基金重点资助项目(9140A04020115JB34011) | | 摘要点击次数:970 | 全文下载次数:279 | 中文摘要: | 针对一类带离散冲击的混合退化装备剩余寿命预测问题,研究了面向混合退化装备剩余寿命预测的平行仿真技术.提出以混合Wiener状态空间模型为基础仿真模型,以泊松冲击到达为模型选择判据,在实时退化数据驱动下,实现仿真模型在线选择,利用强跟踪滤波和期望最大化算法进行仿真模型数据同化和未知参数在线估计,从而实现仿真模型演化,提高仿真模型逼真度.在此基础上,实现了基于平行仿真的剩余寿命实时预测.利用某轴承性能退化数据对平行仿真方法进行了实例验证,仿真结果表明平行仿真方法能有效仿真轴承的性能退化过程,剩余寿命预测的不确定性小、精度高. | English Summary: | Aiming at the remaining useful life (RUL) prediction issue of hybrid degradation equipment with discrete shock, a parallel simulation technology was studied to predict the RUL of hybrid degradation equipments. Firstly, a simulation model was proposed based on a hybrid Wiener state space model, taking the arrival of Poisson shock as the selection criteria of the model. Driven by the real-time degradation data, the online simulation model selection was carried out, realizing the data assimilation of simulation model and online estimation of unknown parameter with a strong tracking filter and expectation maximum algorithm. And it was accomplished to evolve the model and improve the fidelity of simulation model. As a result, the parallel simulation based real-time prediction of RUL was realized. Then, utilizing the degradation data of a bearing, the proposed method was verified. The simulation results show that the parallel simulation method can simulate the performance degradation process effectively, and can predict the RUL with less uncertainty and high accuracy. | 查看全文查看/发表评论下载PDF阅读器 | |
焦龙龙,罗森林,曹伟,潘丽敏,张笈.变异策略动态构建的模糊测试数据生成方法[J].北京理工大学学报(自然科学版),2019,39(5):539~544.JIAOLong-long,LUOSen-lin,CAOWei,PANLi-min,ZHANGJi.FuzzingTestDataGeneratio ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21胡奥婷,胡爱群.基于CP-ABE的自定义读写策略的云数据共享方案[J].北京理工大学学报(自然科学版),2019,39(7):719~724.HUAo-ting,HUAi-qun.CP-ABEBasedDataSharingSchemeSupportingSeparatingRead/WritePe ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21余斌,李晓风,赵赫.基于区块链存储扩展的结构化数据管理方法[J].北京理工大学学报(自然科学版),2019,39(11):1160~1166.YUBin,LIXiao-feng,ZHAOHe.StructuredDataManagementMethodBasedonScalableBlockchai ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21罗玉文,柳丹,范雄华,江晶.空地概率数据关联转换量测滤波算法[J].北京理工大学学报(自然科学版),2019,39(12):1268~1276.LUOYu-wen,LIUDan,FANXiong-hua,JIANGJing.StudyonAir-GroundProbabilityDataAssoci ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21李金,刘文杰,孟祥莲,边晨源,梁洪.脑影像与基因组数据关联的交互可视化方法研究[J].北京理工大学学报(自然科学版),2019,39(S1):12~18.LIJin,LIUWen-jie,MENGXiang-lian,BIANChen-yuan,LIANGHong.ResearchonInterac ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21计卫星,张露露,陈娟,邹天刚,罗辉,郭静,高志伟.一种时序数据多项式拟合加速方法[J].北京理工大学学报(自然科学版),2018,38(5):519~524.JIWei-xing,ZHANGLu-lu,CHENJuan,ZOUTian-gang,LUOHui,GUOJing,GAOZhi-wei.P ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21贺秦禄,边根庆,邵必林,叶娜.一种基于云存储系统的自适应数据碎片恢复优化方法[J].北京理工大学学报(自然科学版),2018,38(8):841~847.HEQin-lu,BIANGen-qing,SHAOBi-lin,YENa.AnAdaptiveDefragmentationRestoreOpt ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21闫书法,马彪,郑长松,王立勇,朱礼安,马源.基于劣化数据的综合传动装置剩余寿命预测[J].北京理工大学学报(自然科学版),2018,38(11):1126~1133.YANShu-fa,MABiao,ZHENGChang-song,WANGLi-yong,ZHULi-an,MAYuan.Remain ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21徐小龙,龚培培.面向云端融合计算的防御性数据销毁机制[J].北京理工大学学报(自然科学版),2017,37(3):281~286.XUXiao-long,GONGPei-pei.DefensiveDataDestructionMechanismforCloud-P2PComputing[J].Tra ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21李向荣,李帅,王国辉,李国栋,李帆.基于有限元数据交会的部件毁伤评估方法研究[J].北京理工大学学报(自然科学版),2017,37(4):430~435.LIXiang-rong,LIShuai,WANGGuo-hui,LIGuo-dong,LIFan.DamageAssessmentMethodo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |