删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于深度学习的自适应场景路面提取方法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于深度学习的自适应场景路面提取方法
Adaptive Road Extraction Method in Different Scene Based on Deep Learning
投稿时间:2018-06-12
DOI:10.15918/j.tbit1001-0645.2018.312
中文关键词:越野场景深度学习场景识别图像语义分割
English Keywords:cross-country environmentdeep learningscene recognitionsemantic segmentation
基金项目:国家自然科学基金资助项目(91420203)
作者单位E-mail
丁泽亮北京理工大学 机械与车辆学院, 北京 100081
胡宇辉北京理工大学 机械与车辆学院, 北京 100081
龚建伟北京理工大学 机械与车辆学院, 北京 100081gongjianwei@bit.edu.cn
熊光明北京理工大学 机械与车辆学院, 北京 100081
吕超北京理工大学 机械与车辆学院, 北京 100081
摘要点击次数:967
全文下载次数:495
中文摘要:
为满足无人驾驶车辆对越野环境的适应能力,提高无人驾驶车辆对环境的理解能力,必须对环境感知层面提出更高的要求.而环境感知中最为关键的一点就是车道线提取或者路面提取.与城市环境下的结构化道路相比,越野环境下的路面提取更加复杂.综合对多种越野场景展开研究,提出了一种能够自适应场景变化的路面分割方法.文中在越野环境下采集了大量的数据,并且制作了相应的数据集;应用深度学习技术对这些场景进行识别;应用语义分割算法对不同场景下的路面进行分割;最后统一了整个算法模块,给出测试结果.
English Summary:
In order to meet the adaptability of autonomous vehicles to the cross-country environment and to improve the understanding ability of autonomous vehicles to the environment, higher requirements for environmental awareness system must be put forward.The most critical point in environmental awareness system is lane extraction or road extraction.However, the cross-country environment is more complicated in comparison with the structured road in the urban environment.The main reason lies in high complexity of the cross-country environment, and the extraction algorithms are different for different scene.A variety of cross-country scenes were studied, and a road segmentation method that adaptable to different scene was proposed.Firstly, a large number of data were collected for the cross-country environment, and the corresponding datasets were established.Secondly, these scenes were arranged to be identified by using deep learning method.And then a semantic segmentation algorithm was applied to segment the roads under different scenes.Finally, the whole algorithm modules were unified to obtain test results.
查看全文查看/发表评论下载PDF阅读器
相关话题/车辆 北京 北京理工大学 机械 环境