二维码(扫一下试试看!) | 基于自适应无迹卡尔曼滤波的分布式驱动电动汽车车辆状态参数估计 | State Parameter Estimation of Distributed Drive Electric Vehicle Based on Adaptive Unscented Kalman Filter | 投稿时间:2017-01-02 | DOI:10.15918/j.tbit1001-0645.2018.07.006 | 中文关键词:自适应无迹卡尔曼滤波状态参数估计分布式驱动电动汽车 | English Keywords:adaptive unscented Kalman filter(AUKF)parameter estimationdistributed driveelectric vehicle | 基金项目:北京市科学技术委员会科技计划项目(Z161100001416005);国家重点研发计划新能源汽车重点专项(2017YFB0103600) | | 摘要点击次数:720 | 全文下载次数:450 | 中文摘要: | 以精确估计车辆状态参数为目标,提出了一种基于自适应无迹卡尔曼滤波的车辆状态参数估计算法,采用非线性三自由度车辆模型,将模糊控制与无迹卡尔曼滤波算法相结合,实现对系统测量噪声的自适应调整,通过对方向盘转角,纵向加速度和横向加速度等低成本传感器信息融合实现对质心侧偏角和横摆角速度的状态估计.应用CarSim与Matlab/Simulink建立分布式驱动电动汽车整车模型并且联合仿真对估计算法的有效性进行验证.结果表明自适应无迹卡尔曼滤波比无迹卡尔曼滤波更能有效准确地进行车辆状态参数估计,在双移线工况中,质心侧偏角估计精度提高了6.7%,横摆角速度估计精度提高了4.8%. | English Summary: | A vehicle state parameter estimation algorithm based on adaptive unscented Kalman filter (AUKF) was proposed to estimate vehicle state parameters accurately. Taking a nonlinear three freedom vehicle model as object, the fuzzy control algorithm and the unscented Kalman filter algorithm were combined to realize the adaptive adjustment of the system measurement noise. The sensor information about steering wheel angle, longitudinal acceleration and lateral acceleration were synthesized to realize the estimation of side slip angle and yaw rate. CarSim and Matlab/Simulink were used to establish the distributed driving electric vehicle model and the effectiveness of the algorithm was verified by simulation. The results show that the adaptive unscented Kalman filter is more effective and accurate than the unscented Kalman filter to estimate the parameters of the vehicle. In the double lane conditions, side slip angle estimation accuracy is improved by 6.7%, and the yaw rate estimation accuracy is improved 4.8%. | 查看全文查看/发表评论下载PDF阅读器 | |
.北京理工大学学报2018年总目次(第38卷)[J].北京理工大学学报(自然科学版),2018,38(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2018,38(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘静,侯宇,苏婷慧,张庆,邵毅敏.基于模块化设计的特种车辆减振降噪技术研究[J].北京理工大学学报(自然科学版),2018,38(S1):38~43.LIUJing,HOUYu,SUTing-hui,ZHANGQing,SHAOYi-min.StudyonVibrationControlandNoi ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘勇.轮毂电机驱动多轴越野车辆总体技术探讨[J].北京理工大学学报(自然科学版),2018,38(S1):55~58.LIUYong.TheStudyonGeneralTechnologyofIn-WheelMotorDriveMultiaxisOff-RoadVehicle[J].Transact ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21郭志强,门日秀,闫柯,孙钰杰.特种车辆涡轮增压器内部流动特性分析[J].北京理工大学学报(自然科学版),2018,38(S1):59~62.GUOZhi-qiang,MENRi-xiu,YANKe,SUNYu-jie.AnalysisonInternalFlowCharacteristicsofSp ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21谢霞,张学玲,段秀兵,徐柳.轮履变体式车辆底盘越障性能研究[J].北京理工大学学报(自然科学版),2018,38(S1):107~111.XIEXia,ZHANGXue-ling,DUANXiu-bing,XULiu.ResearchonObstacle-SurmountingPerformance ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21江燕华,马忠民,徐达,李中好,骆振兴.某越野车辆平顺性仿真分析及综合评价[J].北京理工大学学报(自然科学版),2018,38(S1):103~106.JIANGYan-hua,MAZhong-min,XUDa,LIZhong-hao,LUOZhen-Xing.RideComfortSimulati ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘辉,张聪,韩立金,曹福辉,王伟达,侯旭朝.带耦合机构的串联式履带车辆直驶稳定性控制[J].北京理工大学学报(自然科学版),2018,38(S1):112~116.LIUHui,ZHANGCong,HANLi-jin,CAOFu-hui,WANGWei-da,HOUXu-chao.StraightD ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张志达,李韶华,刘星,周军魏.全轮转向多轴车辆性能分析及侧翻前馈预警研究[J].北京理工大学学报(自然科学版),2018,38(S1):142~146.ZhangZhida,LiShaohua,LiuXing,ZhouJunwei.PerformanceAnalysisandRolloverFeed ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21生辉,盖江涛,马田,马长军,韩政达.履带车辆机电复合制动协调控制现状分析[J].北京理工大学学报(自然科学版),2018,38(S1):195~199.SHENGHui,GAIJiang-tao,MATian,MAChang-jun,HANZheng-da.AnalysisofCoordinated ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21李将彬,吴学雷,李洪彪,刘洋,肖琨.基于GT-SUITE的机电复合驱动车辆建模与仿真[J].北京理工大学学报(自然科学版),2018,38(S1):211~214.LIJiang-bin,WUXue-lei,LIHong-biao,LIUYang,XIAOKun.ModelingandSimulat ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |