二维码(扫一下试试看!) | 基于集成特征选择的盗窃案件预测方法 | Theft Prediction Method Based on Ensemble Features Selection | 投稿时间:2017-06-14 | DOI:10.15918/j.tbit1001-0645.2018.09.018 | 中文关键词:特征选择异质基学习器集成学习器Bagging犯罪预测 | English Keywords:feature selectionheterogeneous learnerensemble learnerBaggingcrime prediction | 基金项目:中国传媒大学工科规划项目(2017XNG1601);中国传媒大学优秀创新团队培育工作基金(YL1604) | | 摘要点击次数:629 | 全文下载次数:354 | 中文摘要: | 盗窃类案件是公安机关较为棘手的一类犯罪,呈现高发低破态势.提前预测发案情况是预防该类型犯罪的有效途径,因此对预测盗窃犯罪提出了一种以Bagging方法为基础、基于特征选择准确度和差异性双重考量的集成学习算法,根据集成学习器好而不同的原则,构造由异质基学习器集成的特征选择器,实现对影响盗窃犯罪发生因子的有效选择,使用更少维度的特征数据集提升犯罪预测的效率和准确度.实验结果表明,提出的SEFV_Bagging算法具有较好的泛化能力和稳定性,在测试数据上表现出的预测准确度也较为理想,且算法无需根据先验知识设置所选特征子集维数,在盗窃犯罪数据分析预测领域应用中有较为明显优势. | English Summary: | Theft crime is a difficult problem which shows a high occurrence and low breaking situation. It is an effective way to prevent the crime by predicting the cases in advance. So a new method was proposed based on bagging, following standards of accuracy and differences in feature selections, with the principle of high accuracy rate and difference rate. Heterogeneous learners were used to construct an ensemble learner to identify the occurrence factors, then the efficiency crime prediction was improved with less dimensions of factors. The results show that the proposed SEFV_Bagging algorithm can provide better generalization ability and stability, also its prediction accuracy is better. In addition, the algorithm needn't transcendental knowledge to set the feature subset dimensions manually, which shows obvious advantages in the application of criminal data analysis and forecasting. | 查看全文查看/发表评论下载PDF阅读器 | |
杨斌,高俊翔,李明,汤善志,杨福贵.长程面形仪稳定系统的设计[J].北京理工大学学报(自然科学版),2018,38(10):1085~1090,1095.YANGBin,GAOJun-xiang,LIMing,TANGShan-zhi,YANGFu-gui.DesignofStableSystemo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈思颖,田依杉,陈和,张寅超,郭磐.粒子退偏比测量拉曼米-偏振激光雷达系统设计与仿真[J].北京理工大学学报(自然科学版),2018,38(10):1091~1095.CHENSi-ying,TIANYi-shan,CHENHe,ZHANGYin-chao,GUOPan.DesignandSimul ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21邱忠超,张卫民,高玄怡,张瑞蕾.基于PSO-LSSVM的疲劳裂纹漏磁定量识别技术[J].北京理工大学学报(自然科学版),2018,38(11):1101~1104,1140.QIUZhong-chao,ZHANGWei-min,GAOXuan-yi,ZHANGRui-lei.Quantitative ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21闫书法,马彪,郑长松,王立勇,朱礼安,马源.基于劣化数据的综合传动装置剩余寿命预测[J].北京理工大学学报(自然科学版),2018,38(11):1126~1133.YANShu-fa,MABiao,ZHENGChang-song,WANGLi-yong,ZHULi-an,MAYuan.Remain ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王向周,张新,郑戍华.基于人工神经网络动态标定算法的低成本视线追踪系统[J].北京理工大学学报(自然科学版),2018,38(12):1263~1268.WANGXiang-zhou,ZHANGXin,ZHENGShu-hua.ALow-CostEye-GazeTrackingSystemBased ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2018年总目次(第38卷)[J].北京理工大学学报(自然科学版),2018,38(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2018,38(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21高海军,杨一飞,郭浩.模拟空间废水生物处理系统的设计及运行与微生物种群结构分析[J].北京理工大学学报(自然科学版),2018,38(12):1314~1320.GAOHai-jun,YANGYi-fei,GUOHao.DesignandOperationofBiotreatmentSystemfo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张军辉,刘代峰,徐兵,张春峰.基于蓄能器式辅助动力源的起竖系统研究[J].北京理工大学学报(自然科学版),2018,38(S1):44~48.ZHANGJun-hui,LIUDai-feng,XUBing,ZhangChun-feng.ResearchonErectionSystemBasedonA ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘静,侯宇,苏婷慧,张庆,邵毅敏.基于模块化设计的特种车辆减振降噪技术研究[J].北京理工大学学报(自然科学版),2018,38(S1):38~43.LIUJing,HOUYu,SUTing-hui,ZHANGQing,SHAOYi-min.StudyonVibrationControlandNoi ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21黄文彬,丁晓喜,杜明刚,邵毅敏.机械传动系统的智能感知技术[J].北京理工大学学报(自然科学版),2018,38(S1):33~37.HUANGWen-bin,DINGXiao-xi,DUMing-gang,SHAOYi-min.IntelligentSensingTechnologyforMech ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |