删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于PSO-LSSVM的疲劳裂纹漏磁定量识别技术

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于PSO-LSSVM的疲劳裂纹漏磁定量识别技术
Quantitative Identification of Magnetic Flux Leakage of Fatigue Crack Based on PSO-LSSVM
投稿时间:2018-05-25
DOI:10.15918/j.tbit1001-0645.2018.11.001
中文关键词:疲劳裂纹PSO-LSSVM定量识别漏磁检测
English Keywords:fatigue crackPSO-LSSVMquantitative identificationmagnetic flux leakage
基金项目:中央高校基本科研业务费专项(ZY20180227);国家自然科学基金资助项目(51275048)
作者单位E-mail
邱忠超防灾科技学院 电子科学与控制工程学院, 河北, 三河 065201
北京理工大学 机械与车辆学院, 北京 100081
张卫民北京理工大学 机械与车辆学院, 北京 100081Zhangwm@bit.edu.cn
高玄怡北京理工大学 信息与电子学院, 北京 100081
张瑞蕾防灾科技学院 电子科学与控制工程学院, 河北, 三河 065201
摘要点击次数:886
全文下载次数:489
中文摘要:
针对疲劳裂纹难以定量识别的问题,提出一种将主成分分析(PCA)和粒子群优化的最小二乘支持向量机(PSO-LSSVM)相结合的建模方法,通过建立漏磁信号与疲劳裂纹宽度、深度之间的非线性映射关系,对疲劳裂纹宽度、深度进行定量识别.搭建漏磁检测系统,采用疲劳拉伸试验制备一系列疲劳裂纹样本,通过疲劳裂纹漏磁定量识别实验,建立漏磁缺陷样本库,对基于PSO-LSSVM的疲劳裂纹漏磁定量识别方法的可行性进行验证.结果表明,该方法能够有效定量识别尺寸小于1 mm;疲劳裂纹的宽度、深度,误差在0.1 mm左右.
English Summary:
To solve the problem of fatigue cracks quantitative identification, a modeling method combining principal component analysis(PCA) and particle swarm optimization least squares support vector machine(PSO-LSSVM) was proposed to establish a nonlinear mapping relationship between magnetic flux leakage signals and fatigue cracks for quantitative identification of the fatigue crack width and depth. Firstly, a magnetic flux leakage detection system was built, and a series of fatigue crack samples were prepared by fatigue tensile test. Then, the quantitative identification experiments of fatigue crack magnetic flux were carried out to establish a magnetic flux leakage defect sample library. Finally, the feasibility of the quantitative identification method of fatigue crack magnetic flux leakage based on PSO-LSSVM was verified. The results show that the method can effectively identify the width and depth of fatigue cracks with a size less than 1 mm, and the error is about 0.1 mm.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 北京理工大学 电子 河北 机械