麻省理工学院(Massachusetts Institute of Technology)是世界著名私立研究型大学,截止至2018年10月,麻省理工学院的校友、教职工及研究人员中,共产生了93位诺贝尔奖得主(世界第六) 、8位菲尔兹奖得主(世界第八)以及25位图灵奖得主(世界第二)。MIT素以顶尖的工程学而著名,拥有众多顶级实验室,位列2016-17年世界大学学术排名(ARWU)工程学世界第一,被称为工程科技界的学术领袖。QS2019材料科学排名全球第一。
二、课程简介
麻省理工学院冬季学术课程共两个主题:
1)New Materials Design & Machine Learning
麻省理工学院材料科学与工程学院(DMSE, MIT)核心实验室主办,由麻省理工学院人工智能/材料科学学科的核心教授担纲课程设计和教学工作。教学团队包括多名来自麻省理工学院人工智能实验室、材料科学与工程实验室等核心科研教学团队的资深教授。课程将重点关注用机器学习的方法反向发现新材料,以及材料科学与其他交叉学科的前沿研究方向等内容,以Project Based Learning (PBL)教学法展开,教学课程与麻省理工学院同期开设的相关学科课程内容同步。
2)MIT Artificial Intelligence for Financial Engineering
麻省理工学院斯隆管理学院(MIT Sloan School of Management)人工智能研究团队主办,由麻省理工学院人工智能/金融工程学科的核心教授担纲课程设计和教学工作。教学团队包括多名来自麻省理工学院人工智能实验室和斯隆管理学院等核心科研教学团队的资深教授。课程将重点关注人工智能对未来商业社会的影响与挑战,以及人工智能与商业管理的交叉学科等内容。课程将以Project Based Learning (PBL)教学法展开,教学课程与麻省理工学院同期开设的相关学科课程内容同步。
麻省理工学院斯隆管理学院被认为是美国最杰出的商学院之一。麻省理工学院斯隆管理学院在2005年被《美国新闻与世界报道》杂志评选为美国排名第四的商学院,仅次于哈佛商学院、斯坦福大学商学院和宾夕法尼亚大学沃顿商学院。自从1914年创办以来,麻省理工学院斯隆管理学院为九十多个国家培养了一万六千多名人才,其中百分之五十的人是高级管理人员,百分之二十的人是公司企业总裁,另外还有六百五十多人创办了自己的公司。美国著名大公司惠普电脑公司,波音飞机公司和花旗银行的总裁都是这所商学院的毕业生。
2020寒假MIT New Materials Design & Machine Learning课程分为Pre-learning、On-campus Course、Post-learning三大部分,共计74个课时。
Pre-learning共计24个课时,须完成指定阅读材料及相关作业。
On-campus Course由两大模块组成——学术模块和探索模块。
学术模块共计50个课时,其中核心教学部分24个课时及实践部分26个课时,核心教授部分以教授及助教的专业课为主,实践部分包括学术项目、小组讨论、小组作业、核心实验室/机构探访等,在学习专业课程的同时,学生将有机会进入MIT核心实验室或波士顿当地行业领先企业,更加全面前瞻性地了解相关技术商业化的发展进程。
探索模块由文化探访、Fellowship及主题Panel组成。波士顿作为美国东部的重要城市,是美国的教育之都、历史之都、艺术之都、体育之都,在同学们学习及探索波士顿的同时,由波士顿当地大学生组成的Fellowship将为学生提供全程的辅导及协助,帮助同学们深入了解波士顿的当地生活及文化;同学们还将有机会参加针对职业发展、科研、就业、创业等主题方向的Panel,为同学们未来发展提供新思路及指导意见。
三、核心课程及简介
1)New Materials Design & Machine Learning
Course Description:
Computational Materials Science involves and enables the visualization of concepts and materials processes which are otherwise difficult to describe or even imagine. Among other things, this field of allows materials to be designed and tested efficiently.
Computational and analytical techniques are necessary for materials science and engineering topics, such as material structure, symmetry, and thermodynamics, materials response to applied fields, mechanics and physics of solids and soft materials. Presents mathematical concepts and materials-related problem-solving skills alongside symbolic programming techniques. Symbolic algebraic computational methods, programming, and visualization techniques; topics include linear algebra, quadratic forms, tensor operations, symmetry operations, calculus of several variables, eigensystems, systems of ordinary and partial differential equations, beam theory, resonance phenomena, special functions, numerical solutions, statistical analysis, Fourier analysis, and random walks.
Academic Syllabus:
The course begins with basic reviews of the foundations of Computational Materials Science before moving on to a more rigorous development of the theories and methodologies that underlie this novel field. Students will also have the chance to explore the applications of the theoretical portions of the program through lectures and site-visit opportunities.
Academic Module:
Module 1: Introduction of New Materials
Module 2: Advanced Machine Learning for Materials Science
Module 3: New Materials Intelligence
Module 4: Computer-driven design of molecular materials
2)MIT Artificial Intelligence for Financial Engineering
Course Description:
In order to compete in the rapidly developing financial sector, it is becoming increasingly necessary to make use of Machine Learning and Artificial Intelligence technologies to analyze massive amounts of data and predict trends.
Financial Engineering is a multidisciplinary field drawing from finance and economics, mathematics, statistics, engineering and computational methods. Machine Learning and Artificial Intelligence play a significant role in the creation of models and trading ideas from Renaissance and similar funds.
The main goal of this program is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of Machine Learning and Artificial Intelligence, with a particular focus on applications of Machine Learning to various practical problems in Finance.
Students will learn the foundational methods in this field of study as well as have extensive opportunities to understand its implementation in real financial contexts.
Academic Syllabus:
With a focus on the organizational and managerial implications of these technologies, rather than on their technical aspects, this course will arm students with the knowledge and confidence students need to pioneer its successful integration in finance. The emphasis of this program will be on the use of simple stochastic models to price derivative securities in various asset classes including equities, fixed income, credit and mortgage-backed securities. This program will also consider the role that some of these asset classes played during the financial crisis.
Methodologies in artificial intelligence and data analysis will be introduced, after which students will gain an in-depth understanding through studies of applications of these technologies in innovative workshops and company visits.
Academic Module:
Module 1: Machine Learning and Artificial Intelligence in Finance
Artificial intelligence in finance is transforming the way we interact with money. AI is helping the financial industry to streamline and optimize processes ranging from credit decisions to quantitative trading and financial risk management.
Module 2: Financial Engineering and Arbitrage-based Pricing Models
The objective of the module is to introduce students to the modern framework for pricing of financial securities, including fixed income assets and derivatives. We cover the fundamental valuation concepts, pricing models, and methodological tools and applications.
Module 3: Financial Engineering and Risk Management
Financial Engineering is a multidisciplinary field drawing from finance and economics, mathematics, statistics, engineering and computational methods. The emphasis of FE & RM Part I will be on the use of simple stochastic models to price derivative securities in various asset classes including equities, fixed income, credit and mortgage-backed securities. We will also consider the role that some of these asset classes played during the financial crisis.
四、课程形式及考核标准
课程形式:
Pre-learning(4周) | On-campus Course(2周) | Post-learning(4周) |
课程概览、预习课件 学术报告阅读、测评 个人作业及论文 | 共50学术课时 - 结合Project Based Learning (PBL) 教学法 24课时 – 专业课 10课时 – 实践课 12课时 – 学术报告阅读、小组讨论、实践成果汇报 4 课时 – 机构探访、研讨会 | 实践成果后续跟进 助理研究员申请 长期项目跟进 |
学生在麻省理工学院学习期间需通过两次项目规定的学术内容考核,项目考核评定标准如下:
个人作业 5%
Project 1 20%
Project 2 20%
个人论文 20%
团队作业展示及演讲 35%
* 按规定完成学习计划和任务且成绩合格者将获得由官方颁发的课程学习证书
五、课程教学团队
1)New Materials Design & Machine Learning
1.W. Craig Carter
POSCO Professor, Department of Materials Science and Engineering, MIT
MacVicar Faculty Fellow
Research Interests: Computational Materials Science, Energy, Energy Storage
2. Markus Buehler
Department Head, Department of CEE, MIT
Jerry McAfee (1940) Professor in Engineering
Research Interests: Materials science and mechanics of natural and biological protein materials (materiomics)
3.Rafael Gomez Bombarelli
Toyota Professor, Department of DMSE, MIT
Research Interests: Computational Materials Science
4.Boris Kozinsky
Professor, John A. Paulson School Of Engineering and Applied Sciences, Harvard University
Research Interests: Computational Materials Science
2)MIT Artificial Intelligence for Financial Engineering
1.Leonid Kogan
Nippon Telegraph & Telephone Professor of Management
Professor, Finance, MIT Sloan School of Management
Director, MIT Laboratory for Financial Engineering
2.Andrew W. Lo
Charles E. and Susan T. Harris Professor, MIT Sloan School of Management
Director, MIT Laboratory for Financial Engineering
3.Kalyan Veeramachaneni
Principal Research Scientist, Department of EECS, MIT
Research Interests: Big data; Human data interaction; Impactful domains
六、项目特色
课程计划:Pre-learning(4周)+ On-campus Course(2周)+ Post-learning(4周)。共计10周课程学习计划,包含出发美国前4周Pre-learning,2周在MIT的学习,以及课程结束后4周的Post-learning。
Pre-learning(4周):4周Pre-learning将以在线学习的形式开展,出发前4周会陆续给学生推送包括预习资料、课程教学计划、学习工具、日程安排及小组作业等相关资料,提前让学生了解课程信息,并提交预习阶段相关个人作业。
On-campus Course(2周):2周在MIT的核心课时共计50课时ContactHour,包含学术部分Academic Lecture共 24课时,以及实践部分共26课时,包含Academic Projects共10课时,Academic reading, discussion, presentation 共12课时,Organization visiting and workshops共4课时。
Post-learning(4周):课程结束后,将持续为学生提供后续咨询、申请等服务,
包括但不限于实践成果后续跟进、助理研究员申请、长期项目跟进等。
实验室/机构探访:实践课时部分将为参与项目的同学提供深度体验和了解MIT实验室和材料科学领先企业的顶级研发团队的机会,更加全面前瞻性地了解相关技术商业化的发展进程。
PBL教学法:在学生完成Pre-learning4周的学习之后,会按照各校学生的学习成绩、英文能力、专业背景等不同考评标准为各校学生匹配作业难度分级的小组,学生将以小组(5-6人)为单位完成每周对应小组作业。
文化探访:将主要通过波士顿作为美国的教育之都,历史之都,艺术之都,体育之都等四方面了解波士顿当地的多元文化,如哈佛自然历史博物馆、皮博迪·艾塞克斯博物馆、波士顿艺术博物馆、科技馆、波士顿市立图书馆、美国职业体育赛事文化体验等。
Fellowship:为使学生们更加全面客观地了解在美留学生活状况及当地文化,由美国当地大学生组成的Fellow团队成员将全程与学生一起,为学生提供全面的辅导及协助,帮助同学们深入了解波士顿的当地生活及文化。
未来规划指导:为提升参与课程的同学在该学术领域的专业知识和实践运用,项目期间将组织针对职业发展、科研、就业、创业等主题方向的讲座,为同学们提供未来职业发展、工作方向的指导,同学们未来发展提供新思路及指导意见。
课程证书:按照授课要求完成规定学习及考核内容将获得课程官方证书;项目中表现优异者将有机会获得授课教授的推荐信,利于学生未来留学计划。
六、报名条件
全日制在读研究生;
具备较强的英语语言沟通能力,同等条件下,优先选拔具有雅思/托福成绩的同学,雅思不低于6.5,托福不低于88。(未能提交有效托福雅思成绩的同学需参加面试)
身心健康,遵纪守法,能较快适应国外的生活、学习和环境;
热爱祖国,在校期间遵守相关法律法规,政治思想端正;
有意识自觉维护国家形象和学校名誉,严格遵守学校规定,富有团队合作精神。
报名须知:本项目总名额20人,报名截止日期2019年12月6日。项目方将在报名截止后统一组织签证办理,未办理护照的同学请尽快于截止日期前办理护照。
七、项目时间
Pre-learning:2020年1月4日-2020年1月31日
(以具体通知日期为准,一般为出发前1个月)
On-campus Course:2020年2月1日-2月15日
(以上项目日期均为北京时间,包含从国际航班起飞至抵达国内全程15天。)
Post-Learning:2020年2月16日-3月8日
八、项目费用
1. 项目费: 5450 USD/人
2. 研究生院将根据申报情况择优进行资助
项目费包含:
(1)项目课程费用、项目实验室实验器械及材料费用、学习资料费用
(2)项目期间住宿费用(住宿标准为两人一间)
(3)餐饮费用(包含每日早餐、部分午餐,共计20餐)
(4)在美交通(波士顿的接送机费用、在美期间的公共交通费用)
(5)文化探索(观看当地体育比赛的费用、参观波士顿当地其他学校、博物馆、自由之路等景点的门票等)
(6) 国际保险费用
(7)美国签证申请协助(包括项目主办方为学生办理邀请函、签证用行程单等资料、面签培训指导等,此项为项目整体服务的一部分,已有美签的不单独退还。)
项目费不包含:
(1)国际往返机票费用;
(2)个人美国签证费用;
(3)银行国际电汇手续费;
(4)个人花费;
九、报名材料
个人身份证、护照、学生证扫描件各 1 份
护照尺寸照片扫描件 1 份
本科及研究生阶段成绩单扫描件 1 份
签证所需材料主办方将另行通知
十、报名流程
报名截止时间:2019年12月6日
扫描以下二维码进行项目线上报名。
?
3.完成线上报名并获得录取邮件后,向研究生院提交:
1)纸质版《北京理工大学在校研究生出国(境)申请表(新版)》(详见附件一)
2)外语水平证明(四、六级/雅思/托福等成绩单复印件)
3)在学期间各类奖励/获奖证明(复印件)
十一、项目咨询
项目方咨询微信:Bobbi,微信号:BostonMind
研究生院:张老师 010-68913589
研究生院培养办公室
2019年11月25日