Uncovering the functionally essential variations related to tumorigenesis and tumor progression from cancer genomics data is still challenging due to the genetic diversity among patients, and extensive inter- and intra-tumoral heterogeneity at different levels of gene expression regulation, including but not limited to the genomic, epigenomic, and transcriptional levels. To minimize the impact of germline genetic heterogeneities, in this study, we establish multiple primary cultures from the primary and recurrent tumors of a single patient with hepatocellular carcinoma (HCC). Multi-omics sequencing was performed for these cultures that encompass the diversity of tumor cells from the same patient. Variations in the genome sequence, epigenetic modification, and gene expression are used to infer the phylogenetic relationships of these cell cultures. We find the discrepancy among the relationships revealed by single nucleotide variations (SNVs) and transcriptional/epigenomic profiles from the cell cultures. We fail to find overlap between sample-specific mutated genes and differentially expressed genes (DEGs), suggesting that most of the heterogeneous SNVs among tumor stages or lineages of the patient are functionally insignificant. Moreover, copy number alterations (CNAs) and DNA methylation variation within gene bodies, rather than promoters, are significantly correlated with gene expression variability among these cell cultures. Pathway analysis of CNA/DNA methylation-related genes indicates that a single cell clone from the recurrent tumor exhibits distinct cellular characteristics and tumorigenicity, and such an observation is further confirmed by cellular experiments both in vitro and in vivo. Our systematic analysis reveals that CNAs and epigenomic changes, rather than SNVs, are more likely to contribute to the phenotypic diversity among subpopulations in the tumor. These findings suggest that new therapeutic strategies targeting gene dosage and epigenetic modification should be considered in personalized cancer medicine. This culture model may be applied to the further identification of plausible determinants of cancer metastasis and relapse.
PDF全文下载地址:
http://gpb.big.ac.cn/articles/download/745
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
Multi-omics Analysis of Primary Cell Culture Models Reveals Genetic and Epigenetic Basis of Intratum
本站小编 Free考研考试/2022-01-03
相关话题/gen
Schizophrenia-associated MicroRNA–Gene Interactions in the Dorsolateral Prefrontal Cortex
Schizophrenia-associatedanomaliesingeneexpressioninpostmortembraincanbeattributedtoacombinationofgeneticandenvironmentalinfluences.Giventhesmalleffect ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03I3: A Self-organising Learning Workflow for Intuitive Integrative Interpretation of Complex Genetic
Weproposeacomputationalworkflow(I3)forintuitiveintegrativeinterpretationofcomplexgeneticdatamainlybuildingontheself-organisingprinciple.Weillustrateth ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03shinyChromosome: An R/Shiny Application for Interactive Creation of Non-circular Plots of Whole Geno
Non-circularplotsofwholegenomesarenaturalrepresentationsofgenomicdataalignedalongallchromosomes.Currently,thereisnospecializedgraphicaluserinterface(G ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03Gclust: A Parallel Clustering Tool for Microbial Genomic Data
Theacceleratinggrowthofthepublicmicrobialgenomicdataimposessubstantialburdenontheresearchcommunitythatusessuchresources.Buildingdatabasesfornon-redund ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03MakeHub: Fully Automated Generation of UCSC Genome Browser Assembly Hubs
Novelgenomesaretodayoftenannotatedbysmallconsortiaorindividualswhosebackgroundisnotfrombioinformatics.Thisaudiencerequirestoolsthatareeasytouse.Suchne ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03Mapping Genome Variants Sheds Light on Genetic and Phenotypic Differentiation in Chinese
遗传变异和人类健康和精准医疗息息相关,因此绘制全人类基因组遗传变异图谱成为全球科学家共同奋斗的目标。近年来,国际千人基因组等多个研究小组纷纷致力于发现世界不同种族人群中基因组变异。我国是个多民族国家,拥有大约20%的世界人口和丰富的遗传多样性。但由于缺乏中国南北方人群特异的参考基因组以及深度测序数据 ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03Whole Genome Analyses of Chinese Population and De Novo Assembly of A Northern Han Genome
Tounravelthegeneticmechanismsofdiseaseandphysiologicaltraits,itrequirescomprehensivesequencinganalysisoflargesamplesizeinChinesepopulations.Here,werep ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03H3K27me3 Signal in the Cis Regulatory Elements Reveals the Differentiation Potential of Progenitors
Drosophilaneuraldevelopmentundergoesextensivechromatinremodelingandpreciseepigeneticregulation.However,therolesofchromatinremodelinginestablishmentand ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03C3: Consensus Cancer Driver Gene Caller
Next-generationsequencinghasallowedidentificationofmillionsofsomaticmutationsinhumancancercells.Akeychallengeininterpretingcancergenomesistodistinguis ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03gFACs: Gene Filtering, Analysis, and Conversion to Unify Genome Annotations Across Alignment and Gen
Publishedgenomesfrequentlycontainerroneousgenemodelsthatrepresentissuesassociatedwithidentificationofopenreadingframes,startsites,splicesites,andrelat ...中科院北京基因组研究所 本站小编 Free考研考试 2022-01-03