删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类微分差分方程的整函数解

本站小编 Free考研考试/2021-12-27

一类微分差分方程的整函数解 吴丽镐1, 张然然2, 黄志波31. 华南理工大学广州学院计算机工程学院 广州 510800;
2. 广东第二师范学院数学系 广州 510303;
3. 华南师范大学数学科学学院 广州 510631 Entire Solutions to a Certain Type of Differential-difference Equations Li Hao WU1, Ran Ran ZHANG2, Zhi Bo HUANG31. School of Computer Engineering, Gungzhou College of South China University of Technology, Guangzhou 510800, P. R. China;
2. Department of Mathematics, Guangdong University of Education, Guangzhou 510303, P. R. China;
3. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(390 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文考虑一类非线性微分差分方程fzn+Lz,f)=qzepz,其中n ≥ 2为自然数,Lz,f)(? 0)是关于fz)的线性微分差分多项式,pz)和qz)是非零多项式.在该方程具有超级小于1的超越整函数解的假设下,证明了n=2且λf)=σf)=deg pz),并给出二次微分差分方程整函数解的具体表示.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-04-03
MR (2010):O174.5
基金资助:国家自然科学基金(11801093,11871260);广东省自然科学基金(2018A030313508);广东省普通高校特色创新类项目(2019KTSCX119);广州市科技计划(202002030228)
通讯作者:黄志波,E-mail:huangzhibo@scnu.edu.cn
作者简介: 吴丽镐,E-mail:wulh@gcu.edu.cn;张然然,E-mail:zhangranran@gdei.edu.cn
引用本文:
吴丽镐, 张然然, 黄志波. 一类微分差分方程的整函数解[J]. 数学学报, 2021, 64(3): 471-478. Li Hao WU, Ran Ran ZHANG, Zhi Bo HUANG. Entire Solutions to a Certain Type of Differential-difference Equations. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 471-478.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/471


[1] Ablowitz M. J.,Halburd R., Herbst B., On the extension of Painlevé property to difference equations, Nonlinearity, 2000, 13(3):889-905.
[2] Chen Z. X., Yang C. C., On entire solutions of certain type of nonlinear differential-difference equations, Taiwanese J. Math., 2014, 18(3):677-685.
[3] Chen Z. X., Shon K. H., Some results on difference Riccati equations, Acta Math. Sin. Engl. Ser., 2011, 27(6):1091-1100.
[4] Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z +η) and difference equations in the complex plane, Ramanujan J., 2008, 16(1):105-129.
[5] Halburd R., Korhonen R., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314(2):477-487.
[6] Halburd R., Korhonen R., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31(2):463-478.
[7] Halburd R., Korhonen R., Tohge K., Holomorphic curves with shift invariant hyper plane preimages, Trans. Amer. Math. Soc., 2014, 366(8):4267-4298.
[8] Halburd R., Wang J., All admissible meromorphic solutions of Hayman's equation, Int. Math. Res. Not., 2015, 2015(18):8890-8902.
[9] Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[10] Heittokangas J., Korhonen R., Laine I., On meromorphic solutions of certain nonlinear differential equations, Bull. Austral. Math. Soc., 2002, 66(2):331-343.
[11] Laine I., Nevanlinna Theory and Complex Differental Equations, de Gruyter, Berlin, 1993.
[12] Laine I., Yang C. C., Clunie theorems for difference and q-difference polynomials, J. London Math. Soc., 2007, 76(3):556-566.
[13] Li P., Entire solutions of certain type of differential equations, J. Math. Anal. Appl., 2008, 344(1):253-259.
[14] Liao L. W., Yang C. C., Zhang J. J., On meromorphic solutions of certain type of nonlinear differential equations, Ann. Acad. Sci. Fenn. Math., 2013, 38(2):581-593.
[15] Yang C. C., On entire solutions of a certain type of nonlinear differential equation, Bull. Austral. Math. Soc., 2001, 64(3):377-380.
[16] Yang C. C., Laine I., On analogies between nonlinear difference and differential equations, Proc. Japan Acad. Ser. A, Math. Sci., 2010, 86(1):10-14.
[17] Yang C. C., Yi H. X., Uniqueness Theory of Meromorphic Function, Kluwer, Dordrecht, 2003.
[18] Zhang R. R., Huang Z. B., On meromorphic solutions of non-linear difference equations, Comput. Methods Funct. Theory, 2018, 18(3):389-408.
[19] Zhang J., Liao L. W., On entire solutions of a certain type of nonlinear differential and difference equations, Taiwanese J. Math., 2011, 15(5):2145-2157.
[20] Zhang J., Lu X., Liao L. W., On exact transcendental meromorphic solutions of nonlinear complex differential equations, Houston J. Math., 2019, 45(2):439-453.

[1]曾翠萍, 邓炳茂, 方明亮. 复微分-差分方程组的整函数解[J]. 数学学报, 2019, 62(1): 123-136.
[2]高凌云. 两类复微分-差分方程组的整函数解[J]. 数学学报, 2016, 59(5): 677-684.
[3]高凌云. 一类复差分方程组的亚纯解[J]. 数学学报, 2016, 59(3): 363-368.
[4]高凌云. 复高阶差分方程解[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 451-458.
[5]张杰. Brück猜想的一类微分和差分方程[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 61-66.
[6]程金发, 吴国春. (2,q)阶分数差分方程的解[J]. Acta Mathematica Sinica, English Series, 2012, 55(3): 469-480.
[7]高凌云. Malmquist型复差分方程组[J]. Acta Mathematica Sinica, English Series, 2012, (2): 293-300.
[8]程金发;. 二阶泛函差分方程的振动性判别准则[J]. Acta Mathematica Sinica, English Series, 2006, 49(2): 317-326.
[9]翁佩萱;郭志浩;. p-Laplace型非线性泛函差分方程正解的存在性[J]. Acta Mathematica Sinica, English Series, 2006, 49(1): 187-194.
[10]陈武华;关治洪;卢小梅. 扰动的中立型时滞差分方程的一致渐近稳定性[J]. Acta Mathematica Sinica, English Series, 2005, 48(1): 63-74.
[11]彭向阳;蔡海涛. 非线性差分方程组多正解的存在性[J]. Acta Mathematica Sinica, English Series, 2003, 46(6): 1097-110.
[12]程金发;ANNIEZ.. m阶中立型泛函差分方程的振动性准则[J]. Acta Mathematica Sinica, English Series, 2002, 45(6): 1207-121.
[13]唐先华;庾建设. 非线性时滞差分方程的线性化振动性[J]. Acta Mathematica Sinica, English Series, 2002, 45(3): 517-528.
[14]杨军;关新平. 一类中立型时滞差分方程的正解[J]. Acta Mathematica Sinica, English Series, 2001, 44(3): 409-416.
[15]关新平;杨军;刘树堂. 一类非线性时滞偏差分方程正解的不存在性[J]. Acta Mathematica Sinica, English Series, 2000, 43(2): 233-238.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23764
相关话题/数学 广州 工程学院 科技 华南师范大学