摘要在α和q满足适当的条件下,当初值属于Fourier-Herz空间?q1-2α(R3)时,我们建立了广义3维不可压旋转Navier-Stokes方程温和解的整体适定性和解析性.作为推论,我们也给出了广义Navier-Stokes方程的相应结论. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-07-17 | | 基金资助:国家自然科学基金(11771423,11871452);中国国家自然科学基金委员会与韩国国家研究基金会联合资助合作交流项目(1191101060);江苏省高等学校自然科学研究面上项目(19KJD100007)
| 作者简介: 王伟华,E-mail:wangvh@163.com |
[1] Babin A., Mahalov A., Nicolaenko B., Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids, Asymptot. Anal., 1997, 15(2):103-150. [2] Babin A., Mahalov A., Nicolaenko B., Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J., 1999, 48(3):1133-1176. [3] Babin A., Mahalov A., Nicolaenko B., 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J., 2001, 50(Suppl):1-35. [4] Bae H., Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations, Proc. Amer. Math. Soc., 2015, 143(3):2887-2892. [5] Bae H., Biswas A., Tadmor E., Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 2012, 205(9):963-991. [6] Bahouri H., Chemin J. Y., Danchin R., Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), Vol. 343, Springer, Heidelberg, 2011. [7] Cannone M., Wu G., Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces, Nonlinear Anal., 2012, 75(9):3754-3760. [8] Chemin J. Y., Gallagher I., Large, global solutions to the Navier-Stokes equations, slowly varying in one direction, Trans. Amer. Math. Soc., 2010, 362(6):2859-2873. [9] Chemin J. Y., Desjardins B., Gallagher I., et al., Mathematical Geophysics, An Introduction to Rotating Fluids and the Navier-Stokes Equations, Oxford Lecture Series in Mathematics and its Applications 32, Oxford University Press, Oxford, 2006. [10] Dragi?evi? O., Petermichl S., Volberg A., A rotation method which gives linear Lp estimates for powers of the Ahlfors-Beurling operator, J. Math. Pures Appl., 2006, 86(6):492-509. [11] Fang D., Han B., Hieber M., Global existence results for the Navier-Stokes equations in the rotational framework in Fourier-Besov spaces, in W. Arendt, R. Chill, Y. Tomilov (eds.), Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Birkhauser, Cham, 2015. [12] Fang D., Han B., Hieber M., Local and global existence results for the Navier-Stokes equations in the rotational framework, Commun. Pure Appl. Anal., 2015, 14(2):609-622. [13] Foias C., Temam R., Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 1989, 87(2):359-369. [14] Giga Y., Inui K., Mahalov, A., Matsui S., Navier-Stokes equations in a rotating frame in R3 with initial data nondecreasing at infinity, Hokkaido Math. J., 2006, 35(2):321-364. [15] Hieber M., Shibata Y., The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 2010, 265(2):481-491. [16] Iwabuchi T., Global well-posedness for Keller-Segel system in Besov type spaces, J. Math. Anal. Appl., 2011, 379(2):930-948 [17] Iwabuchi T., Takada R., Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann., 2013, 357(2):727-741. [18] Iwabuchi T., Takada R., Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 2014, 267(5):1321-1337. [19] Konieczny P., Yoneda T., On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differential Equations, 2011, 250(10):3859-3873. [20] Ladyzhenskaya O. A., Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 1968, 7:155-177. [21] Lei Z., Lin F., Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 2011, 64(2):1297-1304. [22] Lemarié-Rieusset P. G., Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, Vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. [23] Lions J. L., Quelques Méthodes de Résolution des Problémes aux Limites Nonlinéaires, Donud, Paris, 1969. [24] Liu Q., Zhao J., Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces, J. Math. Anal. Appl., 2014, 420(2):1301-1315. [25] Sun J., Yang M., Cui S., Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 2017, 196(4):1203-1229. [26] Triebel H., Theory of Function Spaces. Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983. [27] Wang W., Global existence and analyticity of mild solutions for the stochastic Navier-Stokes-Coriolis equations in Besov spaces, Nonlinear Anal. Real World Appl., 2020, 52:103048pp. [28] Wang W., Wu G., Global mild solution of the generalized Navier-Stokes equations with the Coriolis force, Appl. Math. Lett., 2018, 76(2):181-186. [29] Wu J., The generalized incompressible Navier-Stokes equations in Besov spaces, Dyn. Partial Diff. Equ., 2004, 1(4):381-400. [30] Wu J., Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Comm. Math. Phys., 2006, 263(3):803-831. [31] Zhang P., Zhang T., Global axisymmetric solutions to three-dimensional Navier-Stokes system, Int. Math. Res. Not. IMRN, 2014, 2014(3):610-642.
|
[1] | 赵才地, 吴鹤灵, 李楚进. 一类三维不可压非牛顿流的轨道吸引子[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 1-12. | [2] | 李剑, 赵昕, 吴建华. 不可压缩流问题低次元稳定有限体积数值方法研究[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 15-26. | [3] | 尹会成,仇庆久. 三维不可压缩Euler方程的$H^1(\B[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 29-38. | [4] | 尹会成;仇庆久. 三维不可压缩Euler方程的H1(R~3)轴对称解[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -. | [5] | 张平;仇庆久. 关于3维不可压缩Euler方程组的修正的涡块问题[J]. Acta Mathematica Sinica, English Series, 1997, 40(3): -. | [6] | 郭本瑜;茅德康. 不可压缩粘性流问题的修正逆风格式[J]. Acta Mathematica Sinica, English Series, 1976, 19(1): 30-38. | [7] | 張开明. 关于粘性不可压縮流体的一个定常运动問題[J]. Acta Mathematica Sinica, English Series, 1961, 11(4): 328-332. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23630
一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-272021年7月4-7日,中国科学院电镜技术联盟在上海举办了第五届中科院电镜技术交流讲座。本次会议由中国科学院电镜技术联盟主办,联盟常务理事单位中科院上海硅酸盐所承办。电镜联盟理事单位代表及院内外50余家单位的200余位电镜工作者参加了会议。 中科院院士叶恒强、中科院院士朱静和中科院上海硅酸盐所副所 ... 中科院物理研究所 本站小编 Free考研考试 2021-12-272020年12月2-4日,中国科学院电镜技术联盟在沈阳成功举办了第四届中科院电镜技术联盟交流讲座。本次会议由中国科学院电镜技术联盟主办,联盟常务理事单位中科院金属所承办,院内38家研究所的200余位学员参加了会议。 中科院金属所党委副书记、纪委书记谢光锋,中科院电镜技术联盟常务副理事长白雪冬、副理 ... 中科院物理研究所 本站小编 Free考研考试 2021-12-2712月22日,物理所2020年度所级特优研究生考核暨学术交流活动在物理所怀柔园区X1楼101会议室举行。物理所副所长顾长志、中国科学院院士沈保根、各实验室教育督导、导师代表等共13人作为评委出席活动,所级特优研究生候选人和所长奖学金优秀奖获奖学生共50余人参加了活动。会议由物理所研究员王鹏业和白雪冬 ... 中科院物理研究所 本站小编 Free考研考试 2021-12-27张昱昭1,高征烨2,张永杰3,熊熊41.南京财经大学金融学院,南京210046;2.南京财经大学经济学院,南京210046;3.天津大学管理与经济学部,天津300072;4.中国社会计算研究中心,天津300072出版日期:2021-10-25发布日期:2021-12-24DoestheExchang ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27于晓辉,张志强,于亚南北京物资学院,北京101149出版日期:2021-10-25发布日期:2021-12-24CommunicationStructureCooperativeGameConsideringtheHesitationofPlayer'sParticipationandItsFuzz ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27王秋萍,郭佳丽,王晓峰西安理工大学理学院,西安710054出版日期:2021-05-25发布日期:2021-08-11AChaoticMothFlameOptimizationAlgorithmBasedonDimensionLearningandQuadraticInterpolationWANG ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27杨洁1,刘家财21.福建农林大学管理学院,福州350002;2.福建农林大学交通与土木工程学院,福州350002出版日期:2019-05-25发布日期:2019-08-28CooperativeGamewithaCommunicationStructureandIntervalPayoffsCons ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27蔡川,程铭,苏伟,李辉,徐月霞兰州大学信息科学与工程学院,兰州730000出版日期:2016-11-25发布日期:2017-01-18LINEARINPUTMETHODSFORMATHEMATICALFORMULACAIChuan,CHENGMing,SUWei,LIHui,XUYuexiaScho ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27孟志青1,沈瑞1,党创寅2,蒋敏31.浙江工业大学经贸管理学院,杭州310023;2.香港城市大学系统工程与工程管理系,香港;3.浙江工业大学经贸管理学院,杭州310023出版日期:2016-01-25发布日期:2016-03-02ABARRIEROBJECTIVEPENALTYFUNCTIONAL ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|