删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

广义旋转Navier-Stokes方程解的整体适定性和解析性

本站小编 Free考研考试/2021-12-27

广义旋转Navier-Stokes方程解的整体适定性和解析性 王伟华扬州大学数学科学学院 扬州 225002 Global Well-posedness and Analyticity for the Generalized Rotating Navier-Stokes Equations Wei Hua WANGSchool of Mathematical Sciences, Yangzhou University, Yangzhou 225002, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(570 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要αq满足适当的条件下,当初值属于Fourier-Herz空间?q1-2α(R3)时,我们建立了广义3维不可压旋转Navier-Stokes方程温和解的整体适定性和解析性.作为推论,我们也给出了广义Navier-Stokes方程的相应结论.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-07-17
MR (2010):O177.2
基金资助:国家自然科学基金(11771423,11871452);中国国家自然科学基金委员会与韩国国家研究基金会联合资助合作交流项目(1191101060);江苏省高等学校自然科学研究面上项目(19KJD100007)
作者简介: 王伟华,E-mail:wangvh@163.com
引用本文:
王伟华. 广义旋转Navier-Stokes方程解的整体适定性和解析性[J]. 数学学报, 2020, 63(5): 417-426. Wei Hua WANG. Global Well-posedness and Analyticity for the Generalized Rotating Navier-Stokes Equations. Acta Mathematica Sinica, Chinese Series, 2020, 63(5): 417-426.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I5/417


[1] Babin A., Mahalov A., Nicolaenko B., Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids, Asymptot. Anal., 1997, 15(2):103-150.
[2] Babin A., Mahalov A., Nicolaenko B., Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J., 1999, 48(3):1133-1176.
[3] Babin A., Mahalov A., Nicolaenko B., 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J., 2001, 50(Suppl):1-35.
[4] Bae H., Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations, Proc. Amer. Math. Soc., 2015, 143(3):2887-2892.
[5] Bae H., Biswas A., Tadmor E., Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 2012, 205(9):963-991.
[6] Bahouri H., Chemin J. Y., Danchin R., Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), Vol. 343, Springer, Heidelberg, 2011.
[7] Cannone M., Wu G., Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces, Nonlinear Anal., 2012, 75(9):3754-3760.
[8] Chemin J. Y., Gallagher I., Large, global solutions to the Navier-Stokes equations, slowly varying in one direction, Trans. Amer. Math. Soc., 2010, 362(6):2859-2873.
[9] Chemin J. Y., Desjardins B., Gallagher I., et al., Mathematical Geophysics, An Introduction to Rotating Fluids and the Navier-Stokes Equations, Oxford Lecture Series in Mathematics and its Applications 32, Oxford University Press, Oxford, 2006.
[10] Dragi?evi? O., Petermichl S., Volberg A., A rotation method which gives linear Lp estimates for powers of the Ahlfors-Beurling operator, J. Math. Pures Appl., 2006, 86(6):492-509.
[11] Fang D., Han B., Hieber M., Global existence results for the Navier-Stokes equations in the rotational framework in Fourier-Besov spaces, in W. Arendt, R. Chill, Y. Tomilov (eds.), Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Birkhauser, Cham, 2015.
[12] Fang D., Han B., Hieber M., Local and global existence results for the Navier-Stokes equations in the rotational framework, Commun. Pure Appl. Anal., 2015, 14(2):609-622.
[13] Foias C., Temam R., Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 1989, 87(2):359-369.
[14] Giga Y., Inui K., Mahalov, A., Matsui S., Navier-Stokes equations in a rotating frame in R3 with initial data nondecreasing at infinity, Hokkaido Math. J., 2006, 35(2):321-364.
[15] Hieber M., Shibata Y., The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 2010, 265(2):481-491.
[16] Iwabuchi T., Global well-posedness for Keller-Segel system in Besov type spaces, J. Math. Anal. Appl., 2011, 379(2):930-948
[17] Iwabuchi T., Takada R., Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann., 2013, 357(2):727-741.
[18] Iwabuchi T., Takada R., Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 2014, 267(5):1321-1337.
[19] Konieczny P., Yoneda T., On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differential Equations, 2011, 250(10):3859-3873.
[20] Ladyzhenskaya O. A., Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 1968, 7:155-177.
[21] Lei Z., Lin F., Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 2011, 64(2):1297-1304.
[22] Lemarié-Rieusset P. G., Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, Vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002.
[23] Lions J. L., Quelques Méthodes de Résolution des Problémes aux Limites Nonlinéaires, Donud, Paris, 1969.
[24] Liu Q., Zhao J., Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces, J. Math. Anal. Appl., 2014, 420(2):1301-1315.
[25] Sun J., Yang M., Cui S., Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 2017, 196(4):1203-1229.
[26] Triebel H., Theory of Function Spaces. Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983.
[27] Wang W., Global existence and analyticity of mild solutions for the stochastic Navier-Stokes-Coriolis equations in Besov spaces, Nonlinear Anal. Real World Appl., 2020, 52:103048pp.
[28] Wang W., Wu G., Global mild solution of the generalized Navier-Stokes equations with the Coriolis force, Appl. Math. Lett., 2018, 76(2):181-186.
[29] Wu J., The generalized incompressible Navier-Stokes equations in Besov spaces, Dyn. Partial Diff. Equ., 2004, 1(4):381-400.
[30] Wu J., Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Comm. Math. Phys., 2006, 263(3):803-831.
[31] Zhang P., Zhang T., Global axisymmetric solutions to three-dimensional Navier-Stokes system, Int. Math. Res. Not. IMRN, 2014, 2014(3):610-642.

[1]赵才地, 吴鹤灵, 李楚进. 一类三维不可压非牛顿流的轨道吸引子[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 1-12.
[2]李剑, 赵昕, 吴建华. 不可压缩流问题低次元稳定有限体积数值方法研究[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 15-26.
[3]尹会成,仇庆久. 三维不可压缩Euler方程的$H^1(\B[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 29-38.
[4]尹会成;仇庆久. 三维不可压缩Euler方程的H1(R~3)轴对称解[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -.
[5]张平;仇庆久. 关于3维不可压缩Euler方程组的修正的涡块问题[J]. Acta Mathematica Sinica, English Series, 1997, 40(3): -.
[6]郭本瑜;茅德康. 不可压缩粘性流问题的修正逆风格式[J]. Acta Mathematica Sinica, English Series, 1976, 19(1): 30-38.
[7]張开明. 关于粘性不可压縮流体的一个定常运动問題[J]. Acta Mathematica Sinica, English Series, 1961, 11(4): 328-332.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23630
相关话题/数学 运动 交流 扬州大学 科学学院