删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

体积约束的非局部扩散问题的后验误差分析

本站小编 Free考研考试/2021-12-27

葛志昊, 吴慧丽
河南大学数学与统计学院 & 应用数学所, 开封 475004
收稿日期:2017-04-11出版日期:2018-03-15发布日期:2018-02-03


基金资助:河南省自然科学基金(No:162300410031),河南大学优秀青年资助项目(No:yqpy20140039).


A POSTERIORI ERROR ANALYSIS OF NONLOCAL DIFFUSION PROBLEM WITH VOLUME CONSTRAINTS

Ge Zhihao, Wu Huili
School of Mathematics and Statistics & Institute of Applied Mathematics, Henan University, Kaifeng 475004, China
Received:2017-04-11Online:2018-03-15Published:2018-02-03







摘要



编辑推荐
-->


本文针对体积约束的非局部扩散问题构造了新的后验误差指示器,证明了后验误差指示器的可靠性以及有效性.数值算例验证了理论结果.
MR(2010)主题分类:
65R20
45L05

分享此文:


()

[1] Kroner E. Elasticity theory of materials with long range forces[J]. Int. J. Soli. Struc., 1967, 3(5):731-742.

[2] Rogula D. Nonlocal theory of material media[M]. Springer, Berlin, 1982.

[3] Altan B. Uniqueness of initial-boundary value problems in nonlocal elasticity[J]. Int. J. Soli. Struc., 1989, 25(11):1271-1278.

[4] Altan B. Uniqueness in nonlocal thermoelasticity[J]. J. Ther. Stre., 1991, 14(2):121-128.

[5] Silling S. Reformulation of elasticity theory for discontinuities and long-range forces[J]. J. Mech. Phys. Soli., 2000, 48(1):175-209.

[6] Silling S. Dynamic frature modeling with a meshfree peridynamic code[J]. Comput. Fluid and Solid Mech., 2003, 2003:641-644.

[7] Gilboa G., Osher S. Nonlocal operators with applications to image processing[J]. SIAM J. Mult. Model. Simu., 2008, 7(3):1005-1028.

[8] Du Q., Zhou K. Mathematical analysis for the peridynamics nonlocal continuum theory[J]. ESAIM Math. Model. Numer. Anal., 2011, 45(2):217-234.

[9] Emmrich E., Weckner O. On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity[J]. Comm. Math. Sci., 2007, 5(4):851-864.

[10] Emmrich E., Weckner O. Analysis and numerical approximation of an integro-differential equation modeling nonlocal effects in linear elasticity[J]. Math. and Mech. Solids, 2007, 4(4):363-384.

[11] Lehoucq R., Silling S. Force flux and the peridynamic stress tensor[J]. J. Mech. and Phys. Solids, 2008, 56(4):1566-1577.

[12] Gunzburger M., Lehoucq R. A nonlocal vector calculus with application to nonlocal boundary value problems[J]. SIAM J. Mult. Model. Simu., 2010, 8(5):1581-1598.

[13] Du Q., Gunzbueger M., Lehoucq R., Zhou K. A nonlocal vector caculus, nonlocal volumeconstrained problems, and the nonlocal balance laws[J]. Math. Models Meth. Appl. Sci., 2013, 23(3):493-540.

[14] Aksoylu B., Parks M. Variational theory and domain decomposition for nonlocal problems[J]. Appl. Math. and Comp., 2011, 217(14):6498-6515.

[15] Bobaru F., Yang M., Alves L., Silling S., Askari E., Xu J. Convergence, adaptive refinement, and scaling in 1d peridynamics[J]. Int. J. Numer. Meth. Eng., 2009, 77(6):852-877.

[16] Chen X., Gunzburger M. Continuous and discontinuous finite element methods for a peridynamics model of mechanics[J]. Comp. Meth. Appl. Mech. Eng., 2011, 200(9-12):1237-1250.

[17] Macek R., Silling S. Peridynamics via finite element analysis[J]. Fini. Elem. Anal. Desi., 43(15):1169-1178.

[18] Silling S., Askari E. A meshfree method based on the peridynamic model of solid mechanics[J]. Comp. and Stru., 2005, 83(17-18):1526-1535.

[19] Du Q., Tian L., Zhao X. A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models[J]. SIAM J. Numer. Anal., 2013, 51(2):1211-1234.

[20] Du Q., Ju L., Tian L., Zhou K. A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models[J]. Math. Comp., 2013, 82(284):1889-1992.

[1]唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[2]洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[3]戴小英. 电子结构计算的数值方法与理论[J]. 计算数学, 2020, 42(2): 131-158.
[4]何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[5]张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[6]李世顺, 祁粉粉, 邵新平. 求解定常不可压Stokes方程的两层罚函数方法[J]. 计算数学, 2019, 41(3): 259-265.
[7]王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[8]武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[9]李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2): 167-178.
[10]李晓翠, 杨小远, 张英晗. 一类随机非自伴波方程的半离散有限元近似[J]. 计算数学, 2017, 39(1): 42-58.
[11]曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
[12]赵智慧, 李宏, 罗振东. Sobolev方程的连续时空有限元方法[J]. 计算数学, 2016, 38(4): 341-353.
[13]王军平, 叶秀, 张然. 弱有限元方法简论[J]. 计算数学, 2016, 38(3): 289-308.
[14]郑权, 高玥, 秦凤. Helmholtz方程外边值问题的基于修正的DtN边界条件的有限元方法[J]. 计算数学, 2016, 38(2): 200-211.
[15]石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=229
相关话题/数学 计算 河南大学 结构 推荐