[1] Zhang J W, Krause F L, Zhang H Y. Unifying C-curves and H-curves by extending the calculation to complex numbers[J]. Computer Aided Geometric Design, 2005, 22(9):865-883.[2] 叶正麟, 吴荣军. 平面C-Bézier曲线的奇拐点分析[J]. 计算数学, 2005, 27(1):63-70.[3] Han X A, Ma Y C, Huang X L. The cubic trigonometric Bézier curve with two shape parameters[J]. Applied Mathematical Letters, 2009, 22(2):226-231.[4] Bashir U, Abbsa M, Ali J M. The G2 and C2 rational quadratic trigonometric Bézier curve with two shape parameters with applications[J]. Applied Mathematics and Computation, 2013, 219(20):10183-10197.[5] Li J C. A class of cubic trigonometric Bézier curve with a shape parameter[J]. Journal of Information and Computational Science, 2013, 10(10):3071-3078.[6] Wang W T, Wang G Z. Bézier curves with shape parameters[J]. Journal of Zhejiang University SCIENCE A, 2005, 6(6):497-501.[7] Han X A, Ma Y C, Huang X L. A novel generalization of Bézier curve and surface[J]. Journal of Computational and Applied Mathematics, 2008, 217(1):180-193.[8] Yang L Q, Zeng X M. Bézier curves and surfaces with shape parameters[J]. International Journal of Computer Mathematics, 2009, 86(7):1253-1263.[9] Yan L L, Liang Q F. An extension of the Bézier model[J]. Applied Mathematics and Computation, 2011, 218(6):2863-2879.[10] Chen J, Wang G J. A new type of the generalized Bézier curves[J]. Applied Mathematics:A Journal of Chinese Universities, 2011, 26(1):47-56.[11] Xiang T N, Liu Z, Wang W F, et al. A novel extension of Bézier curves and surfaces of the same degree[J]. Journal of Information and Computational Science, 2010, 7(10):2080-2089.[12] 李军成, 李炳君. 三次Bézier曲线的两种新扩展\[J]. 武汉理工大学学报, 2013, 35(12):159-162.[13] Qin X Q, Hu G, Zhang N J, et al. A novel extension to the polynomial basis functions describing Bezier curves and surfaces of degree n with multiple shape parameters[J]. Applied Mathematics and Computation, 2013, 223:1-16.[14] Li J C. A cubic Bézier model with shape parameter[J]. Applied and Computational Mathematics, 2014, 3(6):343-348.[15] Farin G. Curves and surfaces for Computer-Aided Geometric Design (4ed)[M]. Elsevier Science & Technology Books, Maryland, 1997. |