[1] Black F and Scholes M. The pricing of options and corporate liabilities[J]. J. Pol. Econ., 1973, 81:637-659.[2] Barone-Adesi G and Whaley R E. Efficient analytic approximation of American option values[J]. J. Finance, 1987, 42:301-320.[3] Kim I J. The analytic valuation of American puts[J]. Rev Financ Stud, 1990, 3:547-572.[4] Lai T L and Lim T W. Exercise regions and efficient valuation of American lookback options[J]. Mathematical Finance, 2004, 14:249-269.[5] Cox J C, Ross S A and Rubinstein M. Option pricing:A simplified approach[J]. J. Fin. Econ., 1979, 7:229-263.[6] Zhang R, Song H and Luan N. A weak Galerkin finite element method for the valuation of American options[J]. Front. Math. China, 2014, 9:455-476.[7] Han H and Wu X. A fast numerical method for the Black-Scholes equation of American options[J]. SIAM J. Numer. Anal., 2003, 41:2081-2095.[8] Goldman M B, Sosin H B and Gatto M A. Path dependent options:buy at the low, sell at the high[J]. The Journal of Finance, 1979, 34:1111-1127.[9] Avramidis A N and L'Ecuyer P. Efficient Monte Carlo and Quasi-Monte Carlo option pricing under the Variance-Gamma model[J]. Management Science, 2006, 52:1930-1944.[10] Boyle P P, Lai Y and Tan K S. Pricing options using lattice rules[J]. North American Actuarial Journal, 2005, 9:50-76.[11] Barraquand J and Pudet T. Pricing of American path-dependent contingent claims[J]. Mathe-matical Finance, 1994, 6:17-51.[12] Forsyth P A, Vetzal K R and Zvan R. A finite element approach to the pricing of discrete look backs with stochastic volatility[J]. Applied Mathematical Finance, 1999, 6:87-106.[13] Forsyth P A, Vetzal K R and Zvan R. Convergence of numerical methods for valuing path-dependent options using interpolation[J]. Review of Derivatives Research, 2002, 5:273-314.[14] Yu H, Kwok Y K and Wu L. Early exercise policies of American floating and fixed strike lookback options, Nonlinear Analysis[J]. 2001, 47:4591-4602.[15] Kimura T. American fractional lookback options:valuation and premium decomposition[J]. SIAM J. Appl. Math., 2011, 71:517-539.[16] Zhang K, Song H and Li J. Front-fixing FEMs for the pricing of American options based on a PML technique, Applicable Analysis[J]. 2015, 94:903-931.[17] 姜礼尚. 期权定价的数学模拟和方法(第二版)[M]. 北京:高等教育出版社, 2007.[18] Zhang T, Zhang S, Zhu D. Finite difference approximation for pricing the American lookback option[J]. J. Comput. Math, 2009, 27:484-494.[19] 李庚, 朱本喜, 张琪, 宋海明. 求解Black-Scholes模型下美式回望看跌期权的有限差分法[J]. 吉林大学学报(理学版), 2014, 52:698-702.[20] Holmes A D, Yang H, A front-fixing finite element method for the valuation of American options[J]. SIAM J. Sci. Comput., 2008, 30:2158-2180.[21] Ma J, Xiang K and Jiang Y. An integral equation method with high-order collocation implemen-tations for pricing American put options[J]. Int. J. Econ. Finance, 2010, 2:102-112.[22] Song H, Zhang R and Tian W. Spectral method for the Black-Schles model of American options valuation[J]. Journal of Mathematical Study, 2014, 47:47-64.[23] Sun P and Zhao W. Alternating-direction implicit upwind finite volume method for pricing Asian options[J]. J. Shandong Univ. Nat. Sci. (Chinese), 2007, 42(6):6.[24] Sun P, Zhang L and ZhaoW. A finite volume method for pricing American options[J]. J. Shandong Univ. Nat. Sci. (Chinese), 2007, 42(6):6.[25] Kwok Y K. Mathematical Models of Financial Derivatives, 2nd edition[M]. Springer Finance, Berlin Heidelberg, 2008.[26] Zhao J, Liu M and Qiu M. The stability of the -methods for delay differential equations[J]. J. Comput. Math., 1999, 17:441-448. |