[1] An L J, Peire A. A weakly nonlinear analysis of elastoplastic-microstructure models[J]. J. Math. Anal. Appl., 1995, 55(1):136-155.[2] Steven Levandosky. Stability and instability of fourth order solitary equation[J]. J. Differ. Equ., 1998, 10(1):151-188.[3] Varlamov V. Existence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equation[J]. Math. Methods Appl. Sci., 1996, 19(8):639-649.[4] Varlamov V V. On spatially periodic solutions of the damped Boussinesq equation[J]. Differ. Inte. Equ., 1997, 10(6):1197-1211.[5] Lin Q, Wu Y H, Lai S Y. On global solution of an initial boundary value problem for a class of damped nonlinear equation[J]. Nonlinear Anal., 2008, 69(12):4340-4351.[6] 徐润章, 刘博为. 四阶强阻尼非线性波动方程解的整体存在性与不存在性[J]. 数学年刊, 2011, 32A(3):267-276.[7] Yang Z J. Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term[J]. J. Differ. Equ., 2003, 187(2):520-540.[8] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学, 2010, 32(2):213-218.[9] 史峰, 于佳平, 李开泰. 椭圆方程的一种新型混合有限元格式[J]. 工程数学学报, 2011, 28(2):231-237.[10] 石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析. 应用数学学报, 2014, 37(1):45-58.[11] 史艳华, 石东洋. Sobolev方程新混合元方法的高精度分析[J]. 系统科学与数学, 2014, 34(4):452-463.[12] Shi D Y, Li M H. Superconvergence a:ralysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem[J]. J. Comput. Math., 2014,32(2):205-214.[13] 李磊, 孙萍, 罗振东. 抛物型方程一种新混合元格式及误差分析[J]. 数学物理学报, 2012, 32A(6):1158-1165.[14] 张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析. 计算数学, 2013, 35(2):171-180.[15] Chen Z X. Expanded mixed finite element methods for linear second-order elliptic problems[J]. M2AN, 1998, 32(4):479-499.[16] Chen Z X. Expanded mixed finite element methods for quasilinear second-order elliptic problems[J]. M2AN, 1998, 32(4):501-520.[17] Chen Z X. Analysis of expanded mixed methods for fourth-order elliptic problems[J]. Numer. Meth. Par. Differ. Equ.,1997, 13(5):483-503.[18] Liu Y, Fang Z C, Li H, Siriguleng He, Wei Gao. A coupling method based on new MFE and FE for fourth-order parabolic equation[J]. J. Appl. Math. Comput., 2013, 43(1):249-269.[19] 石东洋, 王芬玲, 赵艳敏. 非线性sine-Gordon方程的各向异性线性元高精度分析新模式. 计算数学, 2014, 36(3):245-256.[20] Shi D Y, Wang P L, Zhao Y M. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation[J]. Appl. Math. Lett., 2014, 38: 129-134.[21] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定:河北大学出版社, 1996.[22] Jack K. Hale. Ordinary differential equations[M]. Willey-Interscience, New York, 1969.[23] Shi D Y, Zhang B Y. High accuracy analysis of the finite element method for nonlinear viscoelastic wave equations with nonlinear boundary conditions[J]. J. Syst. Sci. Complex, 2011, 24(4):795-802.[24] 史艳华, 石东洋. Sobolev方程新混合元方法的高精度分析[J]. 系统科学与数学, 2014, 34(4):452-463. |