删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
转化院周民团队、孙毅团队在Science Advances报道:工程化活性微藻改善肿瘤乏氧微环境,提高肿瘤联合治疗效果
本站小编 Free考研考试/2021-04-05
图1肿瘤中的工程化微藻(绿色)
微藻是一种存在自然界中可进行光合作用的单细胞微生物,在生物燃料、食品、保健品等领域均有广泛应用。近日,浙江大学医学附属第二医院/转化医学研究院周民团队与孙毅团队合作,在工程化活性微藻的体内癌症治疗应用上取得新进展,在Science旗下综合性期刊《Science Advances》在线发表题为“Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer”的研究论文。该文被期刊编辑部选为rotate highlight图片重点推广。
图2光照下的工程化微藻改善肿瘤乏氧微环境
本研究经过工程化改造的活性微藻可以输送到低氧肿瘤区域,以增加局部氧气水平并使抗性癌细胞对放射治疗和光动力治疗重新获得敏感性。通过微藻介导的光合作在肿瘤原位产生氧气可显着改善肿瘤的低氧环境,从而提高了放射治疗的功效。同时微藻释放的叶绿素在激光激发下产生活性氧,进一步赋予光敏作用并增强肿瘤细胞的凋亡。因此,将产生氧气的微藻生物体系与放射疗法和光动力疗法相继结合,有可能创建一种新的癌症治疗策略。综上,本研究揭示了一种利用光合作用治疗肿瘤的新方法,并为藻类增强放射疗法和光动力疗法的未来发展提供了新的概念。
图3工程化微藻的程序性治疗示意图和微藻形貌
由于癌细胞团在微血管周围过速生长所致,实体瘤会不可避免地会形成缺氧状态[1]。肿瘤中的局部缺氧严重阻碍癌症治疗的有效性,尤其是在涉及瘤内氧气的放射疗法(RT)[2]和光动力疗法(PDT)[3]。改善缺氧性肿瘤区域的氧合浓度并克服缺氧,可大大增强PDT/RT的疗效。因此,低氧性肿瘤的再充氧是克服基于低氧的抗性癌症治疗的有效方法[4]。针对此问题,多项研究尝试用纳米载体在肿瘤中原位产生氧气,用以增加缺氧区域的局部氧气以增强治疗功效。但此种方法临床转化价值有限,主要由于大多数给药载体会被肝脏和脾脏中的单核吞噬细胞系统(MPS)所捕获,导致仅有约0.7%给药剂量可到达肿瘤[5]。主要脏器中纳米载体的高摄取现象增加了药物全身毒性的风险,阻碍其向临床应用转化。
图4工程化微藻的程序性治疗体外实验
(光照下,微藻快速产氧来改善癌细胞的乏氧状态;在X射线照射下高效破坏癌细胞的DNA,实现放射治疗增敏效果;随后释放出来的叶绿素可以实现联级光动力治疗。)
自然界中,微藻类通过亿万年的进化获得了复杂的光合作用系统,可实现高效光催化产氧[6]。微藻由于其光致合成作用已被用于多种应用领域,包括生物燃料,保健品,食品,动物饲料,有机肥料,空气净化,生物降解和生物活性化合物。小球藻(C. vulgaris)是一种单细胞绿藻,属于绿藻门四胞藻纲小球藻目,可通过光合作用过程产生氧气[7]。由于藻类资源丰富,成本低,结构均一,传统上将藻类用作新型食物来源的研究模型。值得注意的是,小球藻能够减少消化系统疾病中的内毒素血症[8]并增强宿主抵抗腹膜炎的防御能力[9]且无毒副作用。此外,C. vulgaris含有大量的叶绿素,可在宽波普范围内进行光合作用。由于在650 nm波长激光辐照下会生成活性氧(ROS),因此该功能可用于PDT[10]。藻类的主要分解产物叶绿素对哺乳动物细胞没有遗传副作用,包括染色体断裂,并且可以限制致癌物的生物利用度,而无明显的免疫反应诱导作用。
图5工程化微藻的肿瘤靶向递送和对瘤内乏氧的改善
在本研究中,通过红细胞膜工程化修饰的小球藻可以有效降低免疫细胞的免疫吞噬,显著的降低了巨噬细胞的清除作用,从而将纳米药物更有效输送至肿瘤组织。采用荧光成像方式,可以动态观测到工程化小球藻在肿瘤部位的摄取量,进而选择最佳放疗时间;采用光声影像对工程化微藻在肿瘤组织的血氧含量的动态变化进行观察,实现了肿瘤乏氧的实时、动态监测;同时微藻含有的叶绿素也具有荧光特性,可实现动态荧光成像功能。输送至肿瘤组织的工程化小球藻通过光合作用在肿瘤内部原位产生氧气,可以显著缓解肿瘤乏氧状态,在X射线照射下具有更好的放疗效果。同时,研究发现小球藻本身内含叶绿素可以作为光敏剂产生活性氧,应用于光动力治疗。在前期放疗过程中导致大量的叶绿素从小球藻中释放到肿瘤组织中,再经过650 nm的激光照射,可以实现联级光动力治疗,显著抑制肿瘤的生长。因此本研究结合光声成像/荧光成像两种分子影像模态,为进一步对肿瘤进行放疗和光动力联级治疗提供了精准治疗方案。
图6工程化微藻程序性治疗乏氧肿瘤的分子通路
当前,以大分子、无机纳米和杂化纳米等材料为主要载体的生物材料被广泛应用于肿瘤的诊断和治疗研究,并取得了显著的技术成就。然而,材料的医学转化对规模化生产和生物安全性都提出了十分严格的要求,这无疑成为了各种生物材料由基础研究向临床转化的主要障碍。因此,如何设计和制备具有量产可行性、理想治疗效果和较高生物安全性的载药体系,是该领域亟待解决的重要问题。本文结果表明,天然活性微藻具有较好的生物安全性和可规模化生产的前景。因此,围绕基于天然活性微藻、具有良好生物安全性、影像监测可行性的诊疗一体化药物递送系统,通过合理化设计和针对性应用策略,设计合成高效、安全的活性微藻载药系统,用于医学影像引导下的肿瘤诊断和治疗。在此基础上,建立以天然生物活性微藻为基础的恶性肿瘤的新型治疗方案,并探索其在临床转化的可行性,提供一种新型的肿瘤治疗材料研发技术。有望获得具有临床应用前景的、成药性良好且具备自主知识产权的肿瘤诊断和治疗新技术和新产品。
浙江大学转化医学研究院周民团队博士生/浙江大学附属第二医院眼科中心助理研究员乔越、浙江大学转化医学研究院孙毅团队博士生杨非、周民团队硕士生谢婷婷为论文共同第一作者。浙江大学转化医学研究院/浙江大学附属第二医院周民研究员和浙江大学转化医学研究院孙毅教授为论文的共同通讯作者。浙江大学转化医学研究院吕志民教授为论文的共同作者之一。
研究工作得到了浙江大学眼科中心、恶性肿瘤预警与干预教育部重点实验室、现代光学仪器国家重点实验室的大力支持,该研究也得到了国家重点研发计划、国家自然科学基金、中国博士后科学基金、浙江省重点研发计划专项等项目资助。
参考文献:
[1] West JB. Physiological effects of chronic hypoxia. N. Engl. J. Med. 376, 1965-1971 (2017).
[2] Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumor microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409-425 (2015).
[3] Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Curr. Med. Chem. 18, 2486-2515 (2011).
[4] Rummer JL, McKenzie DJ, Innocenti A, Supuran CT, Brauner CJ. Root Effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Science 340, 1327-1329 (2013).
[5] Wilhelm S, et al. Analysis of nanoparticle delivery to tumors. Nat. Rev. Mater. 1, 16014 (2016).
[6] Georgianna DR, Mayfield SP. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329-335 (2012).
[7] Liu J, Chen F. Biology and industrial applications of chlorella: advances and prospects. in: microalgae biotechnology (Posten C, Chen SF) (2016).
[8] Bedirli A, et al. Administration of Chlorella sp. microalgae reduces endotoxemia, intestinal oxidative stress and bacterial translocation in experimental biliary obstruction. Clin. Nutr. 28, 674-678 (2009).
[9] Tanaka K, et al. augmentation of host defense by a unicellular green alga, Chlorella vulgaris, to Escherichia Coli infection. Infect. Immun. 53, 267-271 (1986).
[10] Song BH, et al. Photodynamic therapy using chlorophyll-a in the treatment of acne vulgaris: A randomized, single-blind, split-face study. J. Am. Acad. Dermatol. 71, 764-771 (2014).
相关话题/肿瘤 生物 工程 医学 动力
周民团队封面报道:螺旋藻作为药物载体,靶向输送药物至乳腺癌肺转移肿瘤
据统计,接近1/3的早期乳腺癌患者会经历肿瘤的复发或转移,而转移性乳腺癌的4年生存率仅为20%左右,其中肺转移肿瘤是乳腺癌转移的较为常见的状况,是导致乳腺癌患者死亡的主要原因。在临床中,转移性乳腺癌的治疗仍以全身化疗为主,但多数现有的化疗药物向转移病灶的递送效率较低,因而难以实现对转移瘤的有效治疗, ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05浙江大学果实品质生物学团队研究发现调控草莓果实花青苷合成的新型转录因子FaRVA1
草莓(Fragaria×ananassaDuch.)是蔷薇科草莓属植物。草莓果实的红色源于花青苷的合成与呈现。已有研究表明,FaMYB10转录因子是草莓花青苷合成的重要调控因子,但其上游调控因子尚不清晰。AP2/ERF位于乙烯信号转导途径末端,参与了果实香气、质地、风味、色泽等品质调控。RAV(Re ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05浙江大学果实品质生物学团队发现调控枇杷果实冷害木质化的新型转录因子
近日,JournalofExperimentalBotany杂志在线发表了浙江大学果实品质生物学团队题为“ETHYLENERESPONSEFACTOR39–MYB8complexregulateslow-temperature-inducedlignificationofloquatfruit”的研 ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05转化院周民团队封面报道: 磁控光合作用微纳机器人,用于靶向肿瘤联合治疗
随着微纳米技术和机器人学的不断进步,微纳机器人逐渐走向人们视野。微纳机器人指的是尺度介于微纳米级别,可以对微纳空间进行精细操作的机器人。由于其具有灵活运动、精确靶向、药物运输等能力,在疾病诊断治疗、靶向递送、无创手术等生物医学领域具有广阔的应用前景。然而现阶段针对微纳机器人的有关研究大多聚焦在体外, ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05农学院教授领衔全国统编教材《种子生物学》(第二版)
2020年3月13日,由浙江大学农业与生物技术学院胡晋教授领衔的全国统编教材《种子生物学》(第二版)编写会首次采用视频会议的形式召开,来自浙江大学、南京农业大学、山东农业大学、湖南农业大学、四川农业大学、华南农业大学、扬州大学、甘肃农业大学、云南农业大学和安徽农业大学等高校的10多位老师出席编写会, ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05海洋学院建成我国首个“人工上升流增汇示范工程”
由海洋学院樊炜副教授团队负责建设的山东鳌山湾海域国家级人工上升流增汇示范工程日前完成全部海域试验任务,标志着我国第一个人工上升流增汇示范工程顺利建成。2017年起,在科技部国家重点研发计划课题《近海蓝碳增汇模式》支持下,课题负责人樊炜致力于我国近海蓝碳增汇研究,并在山东鳌山湾海域建设人工上升流增汇示 ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05吕志民/李新建团队运用CRISPR基因编辑抑制肿瘤生长
CRISPR和以此延伸发展的程序性碱基编辑(programmablebaseediting,PBE)技术可对真核细胞基因组进行改造,有巨大的临床应用价值,然而,这些技术是否也能应用在肿瘤的治疗上还尚少有研究。在许多人类肿瘤中,存在端粒酶基因(TERT)的启动子区域的突变。例如,在目前缺乏有效治疗手段 ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05医学院周民研究员团队在《Biomaterials》发文:表面增强拉曼探针用于医学影像监控下的耐药菌感染伤口灭菌及促愈合研究
2020年1月18日,浙江大学转化医学院周民研究员团队在生物材料领域的顶级期刊《Biomaterials》(IF=10.237)在线发表题为“Gold-SilverNanoshellsPromoteWoundHealingfromDrug-ResistantBacteriaInfectionandE ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05转化医学研究院赵永超团队揭示泛素连接酶FBXW7调控肿瘤细胞放疗敏感性的新机制
抑癌蛋白p53是细胞内最重要的肿瘤抑制蛋白之一,被誉为“基因组卫士”,在多种刺激情况下,p53都能被活化,诱导细胞发生周期阻滞、凋亡、衰老等,从而抑制肿瘤细胞的生长和增殖。因此,在生理条件下,MDM2等E3泛素连接酶降解p53蛋白,使p53蛋白保持在较低水平以维持正常的细胞功能。当发生DNA损伤时, ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05生科院易文教授在Nature Communications在线发表论文揭示糖基化修饰调控肿瘤代谢的新机制
快速增殖的细胞,包括大多数的癌细胞在内,优先选择糖酵解产生乳酸的途径,而不是线粒体氧化磷酸化途径来获得ATP能量,这种现象被称为Warburg效应。Warburg效应促进癌细胞增殖的作用主要体现在三个方面:1)糖酵解能快速地为细胞提供ATP;2)糖酵解的中间代谢物能作为其它生物大分子合成的前体;3) ...浙江大学通知公告 本站小编 Free考研考试 2021-04-05