删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国计量大学光学与电子科技学院导师教师师资介绍简介-井绪峰

本站小编 Free考研考试/2021-04-15

井绪峰
sex
1
title
副教授
department
光学与电子科技学院
college

college2

degree
博士
recruit":0,"firstDiscipline1
光学工程
secondaryDiscipline1
电子科学与技术
firstDiscipline2
电子信息
secondaryDiscipline2

executive

officePhone

mobilePhone

emailAddress
jingxufeng@cjlu.edu.cn
businessAddress
中国计量大学塞博南楼220-1室
individualResume
\r2011/07-至今,中国计量大学,光学与电子科技学院,副教授\r2011/12-2012/11,韩国光州科学研究院,博士后,合作导师:Yonttak Lee\r2014/12 - 2015/3,丹麦奥尔堡大学,非晶材料研究中心,访问****\r2008/9 - 2011/6,中国科学院上海光学精密机械研究所,光学工程,博士,\r2006/9 - 2009/7,山东师范大学,物理学院,硕士,2001/9 - 2005/7,曲阜师范大学,物理工程学院,学士\r
researchTopic
1. 国家自然科学基金青年基金项目,**,双面柔性超材料在宽带太赫兹波自由空间隐身器件中的应用研究,2015/01-2017/12,25万元,在研,主持\r2. 浙江省自然科学基金, 宽带太赫兹波隐身器件用波前整形可调谐超薄柔性超表面的研究,2017/01-2019/12,8万元,在研,主持\r3.国家自然科学基金,基于矢量光衍射理论的低偏振光学薄膜的研究(**),参加。\r4.国家自然科学基金,中红外稀土掺杂氟碲酸盐玻璃光纤的制备及发光机理研究(**),参加。\r5.国家自然科学基金,基于纳米粗化和内建电场的日盲紫外AlGaN阴极材料研究,(**),参加。\r6.国家自然科学基金,全介质太赫兹波生物传感器研究,参加。\r\r
awards

researchProject
留学基金择优资助项目
publications
[1].\tFang, B., Yan, Z., Fan, J., Qi, C., Gan, H., He, Y., ... & Jing, X. (2020). Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface. Optics Communications, 458, 124720. \r[2].\tFang, B., Wang, X., Huang, B., & Jing, X. (2019). Splitting resonance phenomenon of electromagnetic coupling effect for barium strontium titanate dielectric micro-spheres. Optik, 179, 787-795.\r[3].\tJing, X., Chu, C., Li, C., Gan, H., He, Y., Gui, X., & Hong, Z. (2019). Enhancement of bandwidth and angle response of metasurface cloaking through adding antireflective moth-eye-like microstructure. Optics express, 27(15), 21766-21777.\r[4].\tFang, B., Li, C., Peng, Y., & Jing, X. (2019). Broadband terahertz reflector through electric and magnetic resonances by all dielectric cylinder microstructure. Microwave and Optical Technology Letters, 61(6), 1634-1639.\r[5].\tLi, M., Han, S., Gan, H., Li, C., Liu, J., Hong, Z., & Jing, X. (2019). Improvement of Wide-Angle Response for Terahertz Carpet Cloaking by Using a Metasurface with Multilayer Microstructure. Journal of Infrared, Millimeter, and Terahertz Waves, 40(9), 917-928.\r[6].\tJing, X., Xu, Y., Gan, H., He, Y., & Hong, Z. (2019). High Refractive Index Metamaterials by Using Higher Order Modes Resonances of Hollow Cylindrical Nanostructure in Visible Region. IEEE Access, 7, 144945-144956.\r[7].\tFang, B., Li, C., & Jing, X. (2019). Enhancement of unidirectional scattering through magnetic and electric resonances by nanodisks’ chain. Optical Review, 26(1), 131-142.\r[8].\tFang, B., Bie, X., Yan, Z., Gan, H., Li, C., Hong, Z., & Jing, X. (2019). Manipulation of main lobe number and azimuth angle of terahertz-transmitted beams by matrix-form-coding metasurface. Applied Physics A, 125(9), 651.\r[9].\tFang, B., Li, B., Peng, Y., Li, C., Hong, Z., & Jing, X. Polarization‐independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure. Microwave and Optical Technology Letters.\r[10].\tFang, B., Cai, Z., Peng, Y., Li, C., Hong, Z., & Jing, X. (2019). Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials. Journal of Electromagnetic Waves and Applications, 33(11), 1375-1390.\r[11].\tFang, B., Wang, W., Jing, X., Zou, Q., Li, C., Zou, X., & Hong, Z. (2019). Broadband coupling scattering of all-dielectric conical multimer nanostructures. Journal of Optoelectronics and Advanced Materials, 21(March-April 2019), 222-229.\r[12].\tFang, B., Wang, W., Jing, X., Zou, Q., Li, C., Zou, X., & Hong, Z. (2019). Broadband coupling scattering of all-dielectric conical multimer nanostructures. Journal of Optoelectronics and Advanced Materials, 21(March-April 2019), 222-229.\r[13].\tBie, X., Jing, X., Hong, Z., & Li, C. (2018). Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces. Applied optics, 57(30), 9070-9077.\r[14].\tFang, B., Chen, L., Deng, Y., Jing, X., & Li, X. (2018). Numerical investigation of terahertz polarization-independent multiband ultrahigh refractive index metamaterial by bilayer metallic rectangular ring structure. RSC advances, 8(40), 22361-22369.\r[15].\tGui, X., Jing, X., & Hong, Z. (2018). Ultrabroadband perfect reflectors by all-dielectric single-layer super cell metamaterial. IEEE Photonics Technology Letters, 30(10), 923-926.\r[16].\tGui, X., Jing, X., Zhou, P., Liu, J., & Hong, Z. (2018). Terahertz multiband ultrahigh index metamaterials by bilayer metallic grating structure. Applied Physics B, 124(4), 68.\r[17].\tJing, X., Gui, X., Zhou, P., & Hong, Z. (2018). Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter. Journal of Lightwave Technology, 36(12), 2322-2327.\r[18].\tGui, X., Jing, X., Liu, J., Zhou, P., & Hong, Z. (2018). Broadband polarization-independent two-dimensionally isotropic ultrahigh index metamaterials. Infrared Physics & Technology, 89, 174-180.\r[19].\tZhu, H., Jing, X., & Zhou, P. (2018). Strong dipole and higher multi-pole Mie resonance modes with all-dielectric nanoring metasurfaces structure. Superlattices and Microstructures, 113, 592-599.\r[20].\tFang, B., Jing, X., Ye, Q., Cai, J., & Zhou, P. (2018). Broadband Electromagnetic Dipole Resonance by the Coupling Effect of Multiple Dielectric Nanocylinders. Applied Sciences, 8(1), 60.\r[21].\tXia, R., Jing, X., Gui, X., Tian, Y., & Hong, Z. (2017). Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Optical Materials Express, 7(3), 977-988.\r[22].\tZhao, J., Jing, X., Wang, W., Tian, Y., Zhu, D., & Shi, G. (2017). Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Optics & Laser Technology, 95, 56-62.\r[23].\tJing, X., Ye, Q., Hong, Z., Zhu, D., & Shi, G. (2017). Broadband electromagnetic dipole scattering by coupled multiple nanospheres. Superlattices and Microstructures, 111, 830-840.\r[24].\tJing, X., Gui, X., Xia, R., & Hong, Z. (2017). Ultrabroadband unnaturally high effective refractive index metamaterials in the terahertz region. IEEE Photonics Journal, 9(1), 1-7.\r[25].\tJia, M., Zhu, H., Zhu, D., Wang, W., Shi, G., & Jing, X. (2017). High ly efficient anomalous reflection by ultrathin phase gradient planar meta surface arrays in near infrared region. Optoelectronics and Advanced Materials-Rapid Communications, 11(March-April 2017), 148-152.\r[26].\tJing, X., Xia, R., Gui, X., Wang, W., Tian, Y., Zhu, D., & Shi, G. (2017). Design of ultrahigh refractive index metamaterials in the terahertz regime. Superlattices and Microstructures, 109, 716-724.\r[27].\tJing, X., Wang, W., Xia, R., Zhao, J., Tian, Y., & Hong, Z. (2016). Manipulation of dual band ultrahigh index metamaterials in the terahertz region. Applied optics, 55(31), 8743-8751.\r[27]Xufeng Jing*, Xincui Gui, Rui Xia, Zhi Hong, “Ultrabroadband Unnaturally High Effective Refractive Index Metamaterials in the Terahertz Region” IEEE Photonics Journal, 9(1), ** (2017).\r[28]\tXufeng Jing*, Rui Xia, Weimin Wang, Ying Tian, and Zhi Hong, “Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region,” Journal of the Optical Society of America A, 33, 954-961 (2016).\r[29]\tXufeng Jing*, Weimin Wang, Rui Xia, Jingyin Zhao, Ying Tian, and Zhi Hong, “Manipulation of dual band ultrahigh index metamaterials in the terahertz region,” Applied Optics, 55, 8743-8750 (2016).\r[30]\tXufeng Jing*, Junchao Zhang, Ying Tian, Shangzhong Jin, “Improvement of the validity of the simplified modal method for designing a subwavelength dielectric transmission grating,” Applied Optics, 53, 259-268 (2014).\r[31]\tXufeng Jing, Shangzhong Jin*, Junchao Zhang, Ying Tian, Pei Liang, Haibo Shu, Le Wang, Qianmin Dong. “Enhancement of the accuracy of the simplified modal method for designing a subwavelength triangular grooves grating,” Optics Letters, 38(1), 10-12, 2013.\r[32]\tXufeng Jing*, Jianyong Ma, Shijie Liu, Yunxia Jin, Hongbo He, Jianda Shao, Zhengxiu Fan. “Analysis and design of transmittance for an antireflective surface microstructure,” Optics Express, 17(18), 16119–16134, 2009.\r[33]\tXufeng Jing*, Jianda Shao, Junchao Zhang, Yunxia Jin, Hongbo He, and Zhengxiu Fan. “Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays,” Optics Express, 17(26), 24137–24152, 2009.\r[34]\tXufeng Jing*, Junchao Zhang, Shangzhong Jin, Pei Liang, Ying Tian. “Design of highly efficient transmission gratings with deep etched triangular grooves,” Applied Optics, 51(33), 7920-7933, 2012.\r[35]\tXufeng Jing*, Yunxia Jin. “Transmittance analysis of diffraction phase grating,” Applied Optics, 50, C11-C18, 2011.\r[36]\tXufeng Jing, Chee Leong Tan, Chan Il Yeo, Sun Jun Jang, Yong Tak Lee*. “Transmittance design of internal reflection triangular-groove grating at large dimension domain,” Optics and Lasers in Engineering, 51(4), 402-409, 2013.\r[37] Xufeng Jing, Shangzhong Jin*, Ying Tian, Pei Liang, Qianmin Dong, \rLe Wang. “Analysis of the sinusoidal nanopatterning grating structure,” Optics and Lasers in Technology, 48, 160-166, 2013.\r[38] Xufeng Jing*, Ying Tian, Junling Han, Jianyong Ma, Yunxia Jin, Jianda Shao, Zhengxiu Fan. “Polarization effect of femtosecond pulse breakdown in subwavelength antireflective relief grating,” Optics Communication, 284, 4220-4224, 2011.\r[39] Xufeng Jing*, Shangzhong Jin, Ying Tian, Pei Liang, Le Wang, Qianmin Dong. “Analysis of the transmission characteristics of an internal reflection microstructure grating,” Journal of Modern Optics, 59(20), 1772-1785, 2012.\r[40] Xufeng Jing*, Ying Tian, Junchao Zhang, Shunli Chen, Yunxia Jin, Jianda Shao, Zhengxiu Fan. “Modeling validity of femtosecond laser breakdown in wide bandgap dielectrics,” Applied Surface Science, 258, 4741-4749, 2012.\r[41] Xufeng Jing*, Jianpeng Wang, Yunxia Jin, Hongbo He, Jianda Shao, Zhengxiu Fan. “Applied validity of effortless method for design of sinusoidal surface microstructure,” Applied Surface Science, 256, 2775–2780, 2010.\r
others

correlation
researchDirection1
微纳米光子学器件设计与制备,
researchDirection2
太赫兹超材料器件设计与制备、光学薄膜、飞秒微加工,
researchDirection3
光学设计、集成光学器件、光学芯片、光刻技术等,
researchDirection4
新颖电磁光学人工微结构设计制备,隐身衣、零折射率。
相关话题/光学 电子