删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

宁波大学物理科学与技术学院导师教师师资介绍简介-王刚副教授

本站小编 Free考研考试/2021-04-11


王刚,副教授,男,1986年12月出生,江苏徐州人。
联系方式:E-mail: gangwang@nbu.edu.cn
通讯地址:宁波市江北区风华路818号,宁波大学龙赛理科楼406 邮编:315211

2011年6月毕业于兰州大学物理科学与技术学院微电子系,获学士学位。随后保送本校硕博连读,并前往中国科学院上海微系统与信息技术研究所进行硕博连读联合培养。2016年6月,获工学博士学位。
现为宁波大学物理学院副教授,硕士生导师。

主要研究方向:
新型碳材料的制备及其光电和生物检测的应用。担任Advanced Energy Materials,Advanced Functional Materials,Biomaterials,Small,Carbon,Applied Physics Letters和Langmuir等国际物理杂志的审稿人。截止目前已在Nat. Commun., Adv. Energy Maters., Adv. Mater., Adv. Funct. Mater., J. Mater. Chem. A/B/C., Small, ACS Appl. Mater. Interfaces., Adv. Opt. Mater., Appl. Phys. Lett., Langmuir等国际学术刊物发表SCI论文90余篇(ESI高被引论文3篇,封面文章4篇),总引2000余次,H指数=21。申请国家发明专利50余件,授权31件。多次在国内外学术会议上作邀请报告和口头报告。

主要科研项目:
国家自然科学基金/青年科学基金项目: 等离子体增强CVD法低温制备锗基单晶石墨烯连续膜 【主持】
联合参与外单位项目/单位参与国家级科研项目: 碳基二维半导体材料C3N的可控制备、物性与器件研究 【主持】
美国Los Alamos国家能源实验室开放课题: 基于离子注入技术制备层数可控的石墨烯 【主持】
国家重点实验室/开放基金: 基于离子注入技术构建面内石墨烯p-n结及其光电探测器 【主持】
省教育厅()/科研计划: 低温等离子体化学气相沉积法制备锗基石墨烯材料 【主持】
学校科研基金()/基金项目: 水平、无缝拼接的石墨烯p-n结的制备及其光电应用 【主持】
横向委托项目: 半导体基石墨烯材料制备技术开发 【主持】

发表论文情况:
2020(第一作者或通讯作者)
Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. Journal of Materials Chemistry A. 2020, 8, 14778.
Interface engineering-assisted 3D-graphene/germanium heterojunction for high-performance photodetectors. ACS Applied Materials & Interfaces. 2020, 12, 15606.
Polarizing graphene quantum dots toward long-acting intracellular reactive oxygen species evaluation and tumor detection. ACS Applied Materials & Interfaces, 2020, 12, 10781.
Ambipolar plasmon-enhanced photodetector built on germanium nanodots array/graphene hybrid. Advanced Materials Interfaces, 2020, **.
Graphene quantum dot-decorated vertically oriented graphene/germanium heterojunctions for near-infrared photodetectors. ACS Applied Nano Materials, 2020, 3, 6915.
Role of interfacial 2D-graphene in high-performance 3D-graphene/Germanium Schottky junction humidity sensors. Journal of Materials Chemistry C, 2020, 8, 14196.
Distinct antibacterial activity of vertically aligned graphene coating against Gram-positive and Gram-negative bacteria. Journal of Materials Chemistry B. 2020, 8, 6069.
Application of heating type micro-assembly device in two-photon micromachining. Photonic Sensors, 2020, 1.
Selective homocysteine detection of nitrogen-doped graphene quantum dots: Synergistic effect of surface catalysis and photoluminescence sensing. Synthetic Metals, 2020, 267, 116432.
Welding of reduced graphene oxide with high quality and sizeable lateral size by coupling reaction. Materials Letters, 2020, 261, 127010.
High-performance humidity sensor constructed with vertically aligned graphene arrays on silicon Schottky junctions. Materials Letters, 2020, 277, 128343.

2019年之前代表性论文 (第一作者或通讯作者)
Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors. Nature Communications, 2018, 9, 5168.
µ‐graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Advanced Energy Materials, 2018, 8, ** (ESI高被引论文).
Synthesis of layer‐tunable graphene: a combined kinetic implantation and thermal ejection approach. Advanced Functional Materials, 2015, 25, 3666 (封面论文).
Promising fast energy transfer system between graphene quantum dots and the application in fluorescent bioimaging. Langmuir, 2018, 35, 760 (封面论文).
Barrier-assisted ion beam synthesis of transfer-free graphene on an arbitrary substrate. Applied Physics Letters, 2019, 115, 132104 (Featured论文).
Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI3 perovskite solar cells with efficiency beyond 16%. Journal of Materials Chemistry A, 2019, 7, 5740.
Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian. ACS Applied Materials & Interfaces, 2018, 10, 5750.
Ambipolar graphene-quantum dot phototransistors with CMOS compatibility. Advanced Optical Materials, 2018, 6, **.
Seed‐initiated synthesis and tunable doping graphene for high‐performance photodetectors. Advanced Optical Materials, 2019, 7, **.
Controllable growth of vertically oriented graphene for high sensitivity gas detection. Journal of Materials Chemistry C, 2019, 7, 5995.
Direct integration of polycrystalline graphene on silicon as a photodetector via plasma-assisted chemical vapor deposition. Journal of Materials Chemistry C, 2018, 6, 9682.
Graphene quantum dots promoted the synthesis of heavily n-type graphene for near-infrared photodetectors. The Journal of Physical Chemistry C, 2019, 124, 1674.

授权国家发明专利
《一种以掺杂石墨烯量子点为形核点制备掺杂石墨烯的方法》
中国 ZL 8.9
《一种可控的制备石墨烯量子点的方法》
中国 ZL 0.X
《层数可控石墨烯的生长方法》
中国 ZL 7.3
《一种石墨烯的制备方法》
中国 ZL 7.3
《一种石墨烯调制的高K金属栅Ge基MOS器件的制作方法》
中国 ZL 6.5
《一种转移石墨烯的方法》
中国,ZL 4.5
《一种褶皱状石墨烯的制备方法》
中国 ZL 8.6
《一种制备锗基石墨烯纳米孔的方法》
中国 ZL 1.3
《一种在绝缘衬底上制备连续单层石墨烯的方法》
中国 ZL 5.3
《掺杂石墨烯及石墨烯PN结器件的制备方法》
中国 ZL 6.8
《一种制备无褶皱的石墨烯的方法》
中国 ZL 0.6
《一种在绝缘衬底上制备图形石墨烯的方法》
中国 ZL 3.4
《一种绝缘体上石墨烯的制备方法》
中国 ZL 4.5
《锗基石墨烯的抗菌用途》
中国 ZL 0.6
《一种可控石墨烯阵列的制备方法》
中国 ZL 0.8



相关话题/物理科学与技术学院 宁波