删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

杭州师范大学理学院导师教师师资介绍简介-杭州师范大学理学院

本站小编 Free考研考试/2021-04-17

姓名
王金华
性别



联系方式
wangjh@hznu.edu.cn
职称
教授

研究领域
数值分析、非线性优化等

个人简历
学历:
1993/09-1997/07 浙江师范大学 数学 学士
1997/09-2000/07 浙江师范大学 基础数学 硕士
2004/03-2007/03 浙江大学 计算数学 博士
工作简历:
2000/08-2020/02 浙江工业大学 助教、讲师、副教授、教授(2013年晋升)
2020/03-至今 杭州师范大学 教授

教学情况
本科生课程:高等数学,线性代数,高等代数,概率统计
研究生课程:凸分析

科研情况
主持的科研项目:
1、国家自然科学基金面上项目,黎曼流形上若干最优化方法及理论的研究,2018/01-2021/12,在研,主持
2、国家自然科学基金面上项目,黎曼流形和李群上基于回拉的Newton 类算法的研究及其应用,2014/01-2017/12,已结题,主持
3、国家自然科学基金青年基金项目, 流形上收敛性问题的研究,2011/01-2013/12, 已结题,主持
4、浙江省自然科学基金面上项目, 矩阵流形上的Newton类算法,2013/01-2015/12,已结题, 主持
5、浙江省自然科学基金面上项目,黎曼流形上若干优化问题的研究,2017/01-2019/12,已结题, 主持
6、国家自然科学基金面上项目,锥不等式系统和优化问题的逼近解及其扰动分析,2016/01-2019/12,已结题, 主要参加者(排名第二)

发表论文情况:本人多年来一直从事非线性数值泛函、数值代数、算法复杂性分析、非线性优化问题等多个不同领域的研究。尤其是致力于流形上非线性优化问题的数值求解等的研究,取得了一定的研究成果。已经在国际著名学术刊物如《SIAM J. Optim.》,《IMA J. Numer Anal.》,《J. Complexity》,《Inverse Problems》,《J Optim Theory Appl.》,《J Global Optim》,《Comput Optim Appl.》,《J. Math. Anal. Appl》,《Science in China》等上共发表了50余篇SCI学术论文。特别地,已经在应用数学方向上的国际顶级学术期刊《SIAM J. Optim.》发表4篇高水平的论文。主要代表著作如下:
1. J. H. Wang, C. Li, W. P. Shen, Extended Newton-type method for inverse singular value problems with multiple and/or zero singular values, Inverse Problems 36 (2020) 095003 (29pp)
2. X. Li, D. Wu, C. Li, Jinhua Wang, J.-C. Yao, Sparse recovery via nonconvex regularized M-estimators over l_q-balls, Computational Statistics \& Data Analysis, 152(2020) 107047
3. J. H. Wang,Y. H. Hu, C. K. W. Yu, C. Li, X. Q. Yang, Extended Newton methods for multiobjective optimization: Majorizing function technique and convergence analysis, SIAM J. Optim, 2019, 29(3): 2388-2421 (中科院1)
4. J. Bao, C. K. W. Yu, J. H. Wang, Y. Hu, J.-C. Yao, Modified inexact Levenberg-Marquardt methods for solving nonlinear least squares problems, Compt. Optim. Appl, 2019, 74: 547-582, (通讯作者) (中科院2)
5. J. H. Wang, Y. H. Hu, C. K. W. Yu, X. J. Zhuang, A Family of Projection Gradient Methods for Solving the Multiple-Sets Split Feasibility Problem, J. Optim. Theory Appl., 2019, 183: 520-534(中科院2)
6. Y. Zhan, Y. Hu, C. K. W. Yu, J. H. Wang, Cubic convergence of Newton-Steffensen's method for operators with Lipschitz continuous derivative, J. Nonlinear Convex Anal., 2018, 19(3): 433-460.
7. L. Zhang, Y. Hu, C. K. W. Yu, J. H. Wang, Iterative positive thresholding algorithm for nonnegative sparse optimization, Optim.,2018, 67(9): 1345-1363.
8. J. H. Wang, Y. H. Hu, C. Li J.-C. Yao, Linear convergence of CQ algorithms and applications in gene regulatory network inference, Inverse Problems, 2017, 33: 055017 (25pp). (中科院2)
9. J. H. Wang, C. Li, G. Lopez, J.-C. Yao, Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination, SIAM J. Optim, 2016, 26 (4): 2696-2729. (中科院1)
10. X.Wang, C. Li, J. H.Wang, J.-C. Yao, Linear Convergence of Subgradient Algorithm for Convex Feasibility on Riemannian Manifolds, SIAM J. Optim, 2015, 25(4): 2334-2358. (通讯作者) (中科院1)
11. J. H. Wang, Convergence ball of Newton’s method for generalized equations and uniqueness of the solution, J. Nonlinear Convex Anal., 2015, 16(9): 1847-1859
12. B. Dali, C. Li, J. H. Wang, Local convergence of Newtons method on the Heisenberg group, J Comput Appl Math, 2016, 300: 217-232. (通讯作者) (中科院2)
13. J. H. Wang, C. Li, G. Lopez, J.-C. Yao, Convergence analysis of inexact proximal point algorithms on Hadamard manifolds, J Global Optim, 2015, 61: 553-573 (中科院2)
14. J. H.Wang, C. Li, J.-C. Yao, Finite termination of inexact proximal point algorithms in Hilbert spaces, J. Optim. Theory. Appl., 2015, 166: 188-212. (中科院2)
15. V. Jeyakumary G. Y. Li, Boris S. Mordukhovich and J. H. Wang, Robust Best Approximation with Interpolation Constraints under Ellipsoidal Uncertainty: Strong Duality and Nonsmooth Newton Methods, Nonlinear Anal. 2013, 81: 1-11.
16. J. H. Wang, J. C. Yao and C. Li, Gauss-Newton methods for convex composite optimization on Riemannian manifolds, J Global Optim, 2012, 53: 5-28. (中科院2)
17. V. Jeyakumar, J.H. Wang, G. Li Lagrange multiplier characterizations of robust best approximations under constraint data uncertainty, J. Math. Anal. Appl. 2012, 393: 285-297.
18. C. Li, B.S. Mordukhovich, J. H. Wang and J.C. Yao, Weak sharp minima on Riemannia manifolds, SIAM J. Optim, 2011, 21(4): 1523-1560. (中科院1)
19. G. Lopez, V. Martin-Marquez, C. Li and J. H. Wang, Nonexpansive Mappings and Resolvents of Monotone Vector Fields on Hadamard Manifolds, Set-Valued and Variational Analysis, 2011, 19: 361-383,
20. J. H. Wang and G. Lopez, Modified proximal point algorithms on Hadamard manifolds, Optim, 2011, 60(6): 697-708.
21. J. H. Wang and C. Li, Newton’s method on Lie groups with applications to optimization, IMA J Numer Anal, 2011, 31: 322-347. (中科院2)
22. J. H. Wang, Convergence of Newton’s Method for Sections on Riemannian Manifolds,J. Optim. Theory. Appl., 2011, 148(1): 125-145 (中科院2)
23. J. H.Wang, G. Lopez, V. Martin-Marquez and C. Li, Monotone and accretive vector fields on Riemannian manifolds, J. Optim. Theory. Appl., 2010, 146: 691-708. (中科院2)
24. J. H. Wang, Convergence coriterion of the family of Euler-Halley type methods for sections on Riemannian manifolds, Taiwanese J. Math. 2010, 14(6): 2181-2201.
25. J. H. Wang, C.Li and H. K. Xu, Subdifferentials of perturbed distance functions in Banach spaces, J Global Optim. 2010, 46: 489-501. (中科院2)
26. C. Li, N. Chun and J. H. Wang, Convergence behavior of Gauss-Newton’s method and extensions of the Smale point estimate theory, J of Complexity, 2010, 26: 268-295.
27. C. Li, J. H. Wang and J. P. Dedieu, Newton’s Method on Lie groups: Smale’s point estimate theory under the -condition, J of Complexity, 2009, 25: 128-151.
28. C. Li and J. H. Wang, Newton’s Method for Sections on Riemannian Manifolds: Generalized Covariant _-Theory, J of Complexity, 2008, 24: 423-451.
29. C. Li and J. H. Wang, Newton’s method on Riemannian manifolds: Smale’s pointestimatetheory under the -condition, IMA J Numer Anal, 2006, 26: 228-251.(中科院2)
30. J. H.Wang and C. Li, Uniqueness of the singular point of vector field on Riemannian manifold under the -condition, J of Complexity, 2006, 22: 533-548.
31. C. Li and J. H. Wang, Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian Manifolds, Science in China, 2005, 48: 1465-1478.







相关话题/理学院 杭州