删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

杭州电子科技大学计算机学院导师教师师资介绍简介-高飞

本站小编 Free考研考试/2021-04-11

闂傚倷鑳堕幊鎾诲触鐎n剙鍨濋幖娣妼绾惧ジ鏌ㄩ悤鍌涘2婵犵數鍋為崹鍫曞箰缁嬫5娲Ω閳哄绋忛梺鍦劋椤ㄥ棝宕甸埀顒勬⒑閸涘﹤濮﹀ù婊呭仱瀹曟椽鏁撻悩宕囧幘闂佸搫顦悘婵嬪汲閵忋倖鐓熼柨鏇楀亾妞わ妇鏁婚獮鍐╃鐎n偒妫冨┑鐐村灦绾板秹骞夐妶鍡欑闁瑰鍋為ˉ鏍偣娓氬﹦鎮兼俊鍙夊姇閳诲酣骞囬崜浣虹厬婵犵妲呴崹闈涒枍閿濆拋娼╅柕濞炬櫆閻撱儲绻涢幋鐐ㄧ細闁绘帡鏀遍妵鍕敃閵忊晛鍓遍梺鎸庣⊕閸旀瑩鐛€n噮鏁嶆繝濠傛媼濡叉挳姊绘担鍛靛湱鎹㈤幇顔剧煋闁绘垼妫勯崹鍌炴煕瀹€鈧崑鐐哄磻閵娾晜鐓ラ柣鏇炲€圭€氾拷
婵犵數濮伴崹褰掓偉閵忋倕鐐婄憸宥嗘叏閵堝鈷戦柛娑橈工缁楁帗淇婇锝囨创妞ゃ垺妫冩慨鈧柕鍫濇-濡嫰鏌f惔顖滅У闁哥姵鐗犲畷銏ゅ箻椤旂晫鍘搁梺鍛婃礋濞佳囨倶閿濆棎浜滈柟瀛樼箖婢跺嫮绱掔€n亶妯€闁糕斁鍋撳銈嗗坊閸嬫捇鏌嶇拠鏌ュ弰婵¢箖浜堕弻宥堫檨闁告挻鐟╁畷顖涘鐎涙ê浜┑鐐叉▕娴滄繈寮查鍕€堕柣鎰暩閹藉倿鏌涢妶鍥㈤棁澶嬬節婵犲倸鏆fい搴㈩殕閵囧嫰鍩為鐐差仾濠殿垱鎸抽弻锟犲炊閳轰焦鐏侀梺鍛婄憿閸嬫捇姊绘担鍝ョШ婵炰匠鍡愪汗闁绘劗鏁哥粻鏃堟煙閹屽殶闁崇粯姊归幈銊ノ熺拠鎻掝潽闂佹悶鍊х粻鎾诲蓟閻旇櫣鐭欓柟绋垮閹瑩姊烘导娆戠М缂佺姵鐗曢锝夘敃閳垛晜鐎婚梺褰掑亰閸樺墽绮欓崟顖涒拺闁圭ǹ娴烽埥澶愭煛閸偄澧寸€规洖缍婃俊姝岊槼濠殿垰銈搁弻娑樷槈濮楀牊鏁剧紓浣哄У鐢偤鍩€椤掆偓閻忔艾顭垮鈧幃褔宕卞ù鏉挎喘瀹曠ǹ螖娴i晲鐥梻浣侯攰閹活亪姊介崟顖涙櫖闁哄稁鍘介悡蹇涙煕閳╁啯绀€妞わ絺鏆渆e婵犵數濮伴崹鍦礊婵犲洤鐒垫い鎺嶈兌閳洟鏌曢崱妤€鏆i柡灞剧洴楠炴帡骞嬮悜鍡橆棧婵$偑鍊栫敮鐐哄窗閹邦喚鐭欏┑鐘叉处閸嬫劙鏌i姀銏℃毄閺佸牓姊绘担绋挎倯婵犮垺锕㈠畷顖涘鐎涙ê浜梺鍛婄箓婵鲸鎯旈姀锛勭Ф濡炪倖鍔楅崰搴㈢妤e啯鐓涢柛銉e妽閻ㄦ垿鏌i悢鍙夋珔闁宠棄顦甸獮妯肩礄閻樺崬顒㈡俊鐐€栧ú婵嗏枍閺囩偍缂氶煫鍥ㄧ☉瀹告繃銇勯幘妤€鍟锟�20濠德板€楁慨鐑藉磻閻樿绠垫い蹇撴椤洘绻濋棃娑卞剰缂佺姵鍨块弻銈嗘叏閹邦兘鍋撳Δ鈧埢鏃堝閻樺棛鎳撻オ浼村礃閳哄﹥锛呯紓鍌欑椤︻垶顢氶銏犵劦妞ゆ巻鍋撴繝鈧柆宥呯;闁绘梻鍘ч弸渚€鏌曢崼婵愭Ч闁稿骸绉归弻娑㈠即閵娿儱顫╅梺浼欑畱缂嶅﹪骞冨Δ鍐╁枂闁告洦鍙庨弳锟犳⒑閸濆嫭顥戦柛瀣崌濮婃椽宕崟鍨ч梺鍛婃⒐閻楃娀骞冮敓鐘虫櫖闁告洦鍓欓悵浼存⒑闂堟稓绠氶柛鎾寸箞閹€斥枎閹邦喚顔曟繝銏f硾椤戝棛绮堥埀顒勬倵濞堝灝娅嶉柡鈧崡鐑嗗殫闁告洦鍋掗崥瀣煕閺囥劌骞樻俊鍙夊灴濮婃椽宕崟顐熷亾娴犲缍栧璺烘湰閸忔粓鏌涢锝嗙闁哄拋鍓熼幃姗€鎮欓棃娑楀缂備胶濮电敮鈥愁潖婵犳艾鐐婇柨婵嗘噸婢规洟姊洪懡銈呮瀾婵炲弶鍨块幊妤冩崉鐞涒剝鐏侀梺纭呮彧闂勫嫰宕曢幋锔藉€甸柨婵嗛楠炴ḿ绱掗悩宕囧⒌闁哄备鍓濆鍕槈濞嗗浚浼�

高飞 副教授 硕士生导师
计算机科学与技术
计算机视觉,机器学习,人工智能+艺术,人工智能+医学

gaofei@hdu.edu.cn



教授简介
发表论文
高飞,于2015年于西安电子科技大学获得信息与通信工程专业博士学位,于2012年至2013年到澳大利亚悉尼科技大学访问学习。自2015年7月起,任职于杭州电子科技大学计算机学院。主要研究兴趣为计算机视觉与机器学习,涉及智能视觉艺术、医学影像分析、智能机器人等课题。个人主页:aiart.live
研究领域:主要研究兴趣为计算机视觉与机器学习,包括视觉质量评价与增强、图像生成及风格迁移、医疗影像智能分析、深度学习等课题。现已在主流国际期刊、会议上发表论文20余篇,主持和参与多项国家自然科学基金、浙江省自然科学基金项目。以主要参与人员身份获得2016年陕西省科学技术奖一等奖及2011年陕西高等学校科学技术一等奖。还担任多个国际顶级期刊和会议的审稿人。

1.Jun Yu, Xingxin Xu, Fei Gao*, et al., “Towards Realistic Face Photo-Sketch Synthesis via Composition-Aided GANs ,” Arxiv Preprint, Arxiv:1712.00899. (Corresponding Author)
2.H. Jiang, Fei Gao*, Xingxin Xu, et al., “Attentive and Ensemble 3D Dual Path Networks for Pulmonary Nodules Classification,” Neurocomputing, 2019. (Accepted) (Corresponding Author)
3.Fei Gao, Ziyun Li, et al., “Style-adaptive Photo Aesthetic Rating via Convolutional Neural Networks and Multi-task Learning,” Neurocomputing, 2019. (Accepted)
4.Fei Gao, Jun Yu, Suguo Zhu, Qingming Huang, Qi Tian, “Blind Image Quality Prediction by Exploiting Multi-level Deep Representations,” Pattern Recognition, vol 81, pp. 432-442, Sep. 2018.
5.Jun Yu, Kejia Sun, Fei Gao *, Suguo Zhu, “Face biometric quality assessment via light CNN,” Pattern Recognition Letters, vol. 107, pp. 25-32, 1 May 2018. (Corresponding Author)
6.J. Yu, X. Yang, Fei Gao, et al., “Deep Multimodal Distance Metric Learning Using Click Constraints for Image Ranking,” in IEEE Transactions on Cybernetics, vol. 47, no. 12, pp. 4014 - 4024, Dec. 2017
7.Fei Gao, Yi Wang, Panpeng Li, et al., “DeepSim: Deep similarity for image quality assessment,” Neurocomputing, vol. 157, pp. 104-114, 2017.
8.Fei Gao and Jun Yu, “Biologically inspired image quality assessment,” Signal Processing, vol. 124, pp. 210-219, 2016. (ESI Highly Cited Papers)
9.Fei Gao, Dacheng Tao, Xinbo Gao, and Xuelong Li, “Learning to rank for blind image quality assessment,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2275-2290, Oct. 2015.
10.Xinbo Gao, Fei Gao, Dacheng Tao, and Xuelong Li, “Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 12, pp. 2013-2026, 2013.

相关话题/杭州电子科技大学 计算机