删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多元糖醇混合物的蓄放热性能\r\n\t\t

本站小编 Free考研考试/2022-01-16

\r王飞波1, 2,孟祥瑞1, 2,李敏霞1, 2,马一太\r1, 2\r
\r
AuthorsHTML:\r王飞波1, 2,孟祥瑞1, 2,李敏霞1, 2,马一太\r1, 2\r
\r
AuthorsListE:\rWang Feibo1, 2,Meng Xiangrui1, 2,Li Minxia1, 2,Ma Yitai\r1, 2\r
\r
AuthorsHTMLE:\rWang Feibo1, 2,Meng Xiangrui1, 2,Li Minxia1, 2,Ma Yitai\r1, 2\r
\r
Unit:\r\r1. 天津大学机械工程学院,天津 300350;\r
\r\r2. 天津大学中低温热能高效利用教育部重点实验室,天津 300350\r
\r
\r
Unit_EngLish:\r1. School of Mechanical Engineering,Tianjin University,Tianjin 300350,China;
2. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy of Ministry of Education,Tianjin University,Tianjin 300350,China\r
\r
Abstract_Chinese:\r \r\r\r糖醇由于具有高热能存储密度、价格低廉、无毒、无腐蚀性等优点在热能存储领域中有较好的应用前景\r.\r为拓宽糖醇材料相变温度范围,同时获得较高的相变潜热,提高重结晶性,使其更加适用于中低温相变储能,对一元糖醇赤藓糖醇、木糖醇、山梨糖醇、甘露醇和多元共晶糖醇及混合糖醇的蓄放热性能进行实验研究\r. \r实验结果表明:赤藓糖醇和甘露醇在中低温相变储能中的实际工程应用性较强;多元共晶糖醇体系熔点较一元糖醇降低,部分多元共晶糖醇体系的熔化潜热较一元糖醇升高,赤藓糖醇\r-\r甘露醇二元共晶体系较一元甘露醇熔点降低\r30.9\r%\r,熔化潜热提高\r12\r%\r,但是所有多元共晶体系重结晶性均变差,在降温过程中均未出现凝固结晶现象;甘露醇对于赤藓糖醇\r-\r甘露醇二元共晶体系具有一定的成核剂作用,可以提高其重结晶性\r. \r研制了一种新型混合糖醇相变储能材料,即甘露醇与赤藓糖醇的摩尔比为\r1.1\r的混合物,其熔化温度范围\r112.47\r~\r156.88℃,熔化潜热271.71J/g,凝固温度范围77.05~47.48℃,凝固潜热158.6J/g,且DSC凝固曲线双峰部分重叠,经过50次升降温过程,其熔化潜热仅损失2.8%,凝固潜热仅损失3.6%,重结晶性较好;在25~100℃的温度区间内,随着温度的升高,混合物材料的准稳态比热容在0.990~1.010J/(g·℃)之间总体上呈现出先减后增的趋势,作为相变储能材料在实际工程中的应用性较强.\r\r
\r
\r
Abstract_English:\r\rSugar alcohols have a good application prospect in the field of thermal energy storage because of their high advantages, such as thermal energy storage density, low cost, non-toxicity, and non-corrosiveness. To broaden the phase-transition temperature range of sugar alcohol materials and obtain a higher latent heat of phase change, improve recrystallization, and make it more suitable for low- and medium-temperature phase-change energy storage, the thermal energy storage and release performance of erythritol, xylitol, sorbitol, mannitol, poly-eutectic sugar alcohols, and sugar alcohol mixtures were studied experimentally. Experimental results show that erythritol and mannitol have strong engineering application in low- and medium-temperature phase-change energy storage; the melting point of the poly-eutectic sugar alcohol system is lower than that of the unitary sugar alcohol, melting latent heat of some poly-eutectic sugar alcohol systems is higher than that of the unitary sugar alcohol, melting point of erythritol-mannitol binary eutectic system is 30.9% lower than that of the mono-mannitol system, and melting latent heat is 12% higher; however, the recrystallization of all poly-eutectic sugar alcohol systems is poor, and no solidification phenomenon occurs during the cooling process; mannitol has a certain nucleating agent effect on the erythritol-mannitol binary eutectic system and can improve its recrystallization. Herein, a new type of mixed sugar alcohol phase-change energy storage material was developed. The molar ratio of mannitol to erythritol is 1.1, melting temperature range is 112.47\r—\r156.88℃, latent heat of fusion is 271.71 J/g, solidification temperature range is 77.05—47.48℃, latent heat of solidification is 158.6 J/g, and double peaks of differential scanning calorimetry (DSC) solidification curve partially overlap. The melting latent heat loss is only 2.8% and solidification latent heat loss is only 3.6% after 50 times heating and cooling processes, and the recrystallization is good. In the temperature range of 25—100℃, with the increase of temperature, the quasi-static specific heat capacity of the mixtures decreases first and then increases between 0.990 and 1.010 J/(g·℃). As a phase-change energy storage material, the developed material has strong application in practical engineering.\r\r
\r
Keyword_Chinese:糖醇;相变材料;熔化;凝固;储能\r

Keywords_English:sugar alcohol;phase change material;melting;solidification;energy storage\r


PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6451
相关话题/混合物 性能