删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

微通道流动沸腾过程中异态相干沸腾的强化传热研究

本站小编 Free考研考试/2022-01-16

宇高義郎 1, 2, 3,郭嘉翔 1, 2,陈志豪1, 2
AuthorsHTML:宇高義郎 1, 2, 3,郭嘉翔 1, 2,陈志豪1, 2
AuthorsListE:Utaka Yoshio 1, 2, 3,Guo Jiaxiang 1, 2,Chen Zhihao 1, 2
AuthorsHTMLE:Utaka Yoshio 1, 2, 3,Guo Jiaxiang 1, 2,Chen Zhihao 1, 2
Unit:1. 天津大学机械工程学院,天津 300072;
2. 中低温热能高效利用教育部重点实验室(天津大学),天津 300072;
3. 玉川大学工学部,日本 东京 194-8610
Unit_EngLish:1. School of Mechanical Engineering,Tianjin University,Tianjin 300072,China;
2. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy of Ministry of Education(Tianjin University),Tianjin 300072,China;
3. School of Engineering,Tamagawa University,Tokyo 194-8610,Japan
Abstract_Chinese:随着电子器件的集成化和小型化,其散热量超过10MW/m2将成为现实,这超出了目前大功率系统中使用的单相冷却方案的上限,所以必须再次开发新的冷却方案.克服单相传热局限性的一种方法是转变为两相沸腾传热,而临界热流密度又是所有沸腾传热的上限值.因此,为了提高微通道内流动沸腾传热的临界热流密度,本文设计开发了非均匀导热性传热板.通过将两种不同导热性能的材料(铜和聚四氟乙烯)交替布置在靠近传热表面的传热板内,实现了传热表面的非均匀温度分布和异态相干沸腾模式(核态沸腾与膜态沸腾共存且相互干涉的状态).同时搭建了微通道流动沸腾实验系统,其微通道截面尺寸为1.84mm´70.00mm,通道长度为280.0mm,传热板表面尺寸为10.0mm´10.0mm,流体工质为去离子水.在不同入口流速v=0.1m/s、0.2m/s、0.4m/s和不同过冷度 DTsub=10.0K、20.0K、30.0K条件下,研究了非均匀导热性传热板在微通道流动沸腾中的传热强化效果.结果表明,相对于单纯的核态沸腾状态,异态相干沸腾状态能够有效地提升流动沸腾传热的临界热流密度.此外,改变入口流速和过冷度对临界热流密度有明显影响且趋势相同,减小入口流速和过冷度都会增大临界热流密度的提升比例.在本文的实验条件范围内,在水的流速v=0.1m/s、过冷度DTsub=10.0K的条件下,实现了最高约43.4%的临界热流密度提升比例.
Abstract_English:Due to the integration and miniaturization of electronic devices,their heat dissipation can exceed 10MW/m2,which is beyond the upper limit of a single-phase cooling scheme used in the current high-power systems;therefore,a new cooling scheme is urgently needed.One of the possible ways for overcoming the limitation of a single-phase heat transfer is to change it to the two-phase boiling heat transfer,where the critical heat flux (CHF) is the upper limit of the boiling heat transfer.Therefore,in order to improve the critical heat flux of flow boiling in a microchannel,non-uniform thermal conductivity plate was designed.Two types of materials with different thermal properties,copper and polytetrafluoroethylene,were alternately arranged inside the heat transfer plate near the surface to realize the non-uniform temperature distribution on the heat transfer surface and different-mode-interacting boiling,that is,the coexistence of nucleate boiling and film boiling.Also,a micro-channel flow boiling experimental system is built.In the experiments,the microchannel section size was 1.84mm´70.00mm,the channel length was 280.0mm,the surface size of the heat transfer plate was 10.0mm´10.0mm,and the test fluid was deionized water.The effect of different-mode-interacting boiling types on the heat transfer enhancement during the flow boiling in a micro-channel was studied at different inlet velocities and subcoolings,which were v=0.1m/s,0.2m/s,and 0.4m/s and DTsub=10.0K,20.0K,and 30.0K,respectively.The results showed that the different-mode-interacting boiling could effectively enhance the CHF of flow boiling compared with the nucleate boiling.In addition,the inlet velocity and subcooling had a significant impact on the critical heat flux,and the trends were the same.Thus,the reduction in inlet velocity and subcooling could increase the ratio of critical heat flux enhancement.In the experiment,the largest ratio of critical heat flux enhancement was approximately 43.4% at the inlet velocity of v0.1m/s and subcooling DTsub of 10.0K.
Keyword_Chinese:沸腾传热强化;流动沸腾;异态相干沸腾;临界热流密度;非均匀导热板
Keywords_English:boiling heat transfer enhancement;flow boiling;different-mode-interacting boiling;critical heat flux;plate with non-uniform thermal conductivity

PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6511
相关话题/传热 通道