删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

环状周期结构面外参激振动稳定性分析

本站小编 Free考研考试/2022-01-16

杨玉虎1, 杜爱伦1, 王世宇1,2
AuthorsHTML:杨玉虎1, 杜爱伦1, 王世宇1,2
AuthorsListE:Yang Yuhu1, Du Ailun1, Wang Shiyu1,2
AuthorsHTMLE:Yang Yuhu1, Du Ailun1, Wang Shiyu1,2
Unit:1. 天津大学机械工程学院,天津 300072;2. 天津市非线性动力学与控制重点实验室,天津 300072
Unit_EngLish:1.School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
2.Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin 300072, China
Abstract_Chinese:针对工程领域广泛应用的一类受移动载荷作用的环状周期结构, 开展了面外参激弹性振动稳定性研究.首先采用Hamilton原理在载荷随动坐标系下建立了时不变动力学模型.然后应用Galerkin方法对其进行离散, 得到常微分动力学模型, 最后通过计算特征值预测了模态特性和动力稳定性.为了验证解析结果的正确性, 应用坐标变换将模型转换至惯性坐标系下, 得到时变动力学模型, 然后采用Floquét理论计算了不稳定域.该研究提供了一种解决移动载荷参激振动问题的有效途径.
Abstract_English:This work aims at the out-of-plane parametric elastic vibration of intensively-used ring-shaped periodic structures subjected to moving loads in engineering field. A time-invariant dynamic model was established by using Hamilton principle under the load-fixed coordinates. A set of ordinary differential equations were formulated by Galerkin method. The modal characteristics and the dynamic instability were identified by means of eigenvalue. For the purpose of verification,the model was equivalently transformed into a time-variant version under the inertial frame by introducing a transformation,and the unstable regions were calculated by Floquét theory. The research provides an efficient way to solve the problem of parametric vibration induced by moving loads.
Keyword_Chinese:环状周期结构; 参激振动; 特征值; 动力稳定性
Keywords_English:ring-shaped periodic structure; parametric vibration; eigenvalue; dynamic stability

PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6074
相关话题/结构 环状