谢毅超博士 (XIE, Yi-Chao PhD)
西安交通大学航天航空学院
特聘研究员,博士生导师
西安交通大学青年拔尖人才
ORCID: https://orcid.org/0000-0002-2159-4579
联系方式
电邮:yichao.xie@xjtu.edu.cn
地址:陕西省西安市咸宁西路28号西安交通大学航天航空学院北319
站点计数器
我的新闻
欢迎同学们通过夏令营了解并加入课题组!
2021-05-27
课题组获得国家自然科学基金青年项目资助
2020-10-19
欢迎任磊同学和陶鑫同学加入课题组!
2020-09-09
【嗷嗷叫的年轻人】“只有大改变,才有大发展”——空天与力学研究院流体力学平台搬迁记
2020-07-07
更多新闻>>
研究领域
谢毅超博士主要从事湍流实验研究。主要研究方向包括:热湍流输运规律、湍流相干结构(热羽流、大尺度环流)动力学、粗糙壁面湍流、高分子聚合物与湍流相互作用。详细的研究内容见 Introduction to My Research Works 标签页。
招生信息
本课题组常年招聘博士后。同时也欢迎同学参加西交航院2021年的夏令营活动,并通过夏令营活动了解本课题组。如果您对MHD热湍流、对流、高分子聚合物与湍流相互作用和湍流结构动力学研究感兴趣,请联系yichao.xie@xjtu.edu.cn。
工作经历
2019年11月 到 现在 西安交通大学 特聘研究员
2016年06月 到 2019年10月 香港中文大学 Research Associate
教育经历
2012年10月到2016年04月 就读于香港中文大学,获得博士学位
2010年08月到2012年09月 就读于香港中文大学,获得硕士学位
2006年09月到2010年07月 就读于西北大学(中国),获得学士学位
论文期刊
没有找到条目。
论文标题作者发表/完成日期期刊名称
Universal fluctuations in the bulk of Rayleigh–Bénard turbulence Y.-C. Xie, B.-Y.-C. Cheng, Y.-B. Hu, K.-Q. Xia 2019-09-06 Journal of Fluid Mechanics
Flow Topology Transition via Global Bifurcation in Thermally Driven Turbulence Y.-C. Xie, G.-Y. Ding and K.-Q. Xia 2018-05-22 Physical Review Letters
Turbulent thermal convection over rough plates with varying roughness geometries Y.-C. Xie and K.-Q. Xia 2017-08-25 Journal of Fluid Mechanics
Statistical characterization of thermal plumes in turbulent thermal convection S.-Q. Zhou, Y.-C. Xie, C. Sun and K.-Q. Xia 2016-09-12 Physical Review Fluids
Effects of polymer additives in the bulk of turbulent thermal convection Y.-C. Xie, S.-D. Huang, D. Funfschilling, X.-M. Li, R. Ni and K.-Q. Xia 2015-11-04 Journal of Fluid Mechanics
Dynamics and flow coupling in two-layer turbulent thermal convection Y.-C. Xie and K.-Q. Xia 2013-07-05 Journal of Fluid Mechanics
Dynamics of the large-scale circulation in high-Prandtl-number turbulent thermal convection Y.-C. Xie, P. Wei and K.-Q. Xia 2013-02-01 Journal of Fluid Mechanics
20条目每页4每个页面的条目数
8每个页面的条目数
20每个页面的条目数
40每个页面的条目数
60每个页面的条目数
显示7结果中的1-7。
上一页面
页面1
下一页
Yi-Chao XIE Group - 谢 毅超 (XIE Yichao)基本信息
谢毅超博士 (XIE, Yi-Chao PhD)
西安交通大学航天航空学院
特聘研究员,博士生导师
西安交通大学青年拔尖人才
ORCID: https://orcid.org/0000-0002-2159-4579
联系方式
电邮:yichao.xie@xjtu.edu.cn
地址:陕西省西安市咸宁西路28号西安交通大学航天航空学院北319
站点计数器
我的新闻
欢迎同学们通过夏令营了解并加入课题组!
2021-05-27
课题组获得国家自然科学基金青年项目资助
2020-10-19
欢迎任磊同学和陶鑫同学加入课题组!
2020-09-09
【嗷嗷叫的年轻人】“只有大改变,才有大发展”——空天与力学研究院流体力学平台搬迁记
2020-07-07
更多新闻>>
研究领域
谢毅超博士主要从事湍流实验研究。主要研究方向包括:热湍流输运规律、湍流相干结构(热羽流、大尺度环流)动力学、粗糙壁面湍流、高分子聚合物与湍流相互作用。详细的研究内容见 Introduction to My Research Works 标签页。
招生信息
本课题组常年招聘博士后。同时也欢迎同学参加西交航院2021年的夏令营活动,并通过夏令营活动了解本课题组。如果您对MHD热湍流、对流、高分子聚合物与湍流相互作用和湍流结构动力学研究感兴趣,请联系yichao.xie@xjtu.edu.cn。
工作经历
2019年11月 到 现在 西安交通大学 特聘研究员
2016年06月 到 2019年10月 香港中文大学 Research Associate
教育经历
2012年10月到2016年04月 就读于香港中文大学,获得博士学位
2010年08月到2012年09月 就读于香港中文大学,获得硕士学位
2006年09月到2010年07月 就读于西北大学(中国),获得学士学位
论文期刊
没有找到条目。
论文标题作者发表/完成日期期刊名称
Universal fluctuations in the bulk of Rayleigh–Bénard turbulence Y.-C. Xie, B.-Y.-C. Cheng, Y.-B. Hu, K.-Q. Xia 2019-09-06 Journal of Fluid Mechanics
Flow Topology Transition via Global Bifurcation in Thermally Driven Turbulence Y.-C. Xie, G.-Y. Ding and K.-Q. Xia 2018-05-22 Physical Review Letters
Turbulent thermal convection over rough plates with varying roughness geometries Y.-C. Xie and K.-Q. Xia 2017-08-25 Journal of Fluid Mechanics
Statistical characterization of thermal plumes in turbulent thermal convection S.-Q. Zhou, Y.-C. Xie, C. Sun and K.-Q. Xia 2016-09-12 Physical Review Fluids
Effects of polymer additives in the bulk of turbulent thermal convection Y.-C. Xie, S.-D. Huang, D. Funfschilling, X.-M. Li, R. Ni and K.-Q. Xia 2015-11-04 Journal of Fluid Mechanics
Dynamics and flow coupling in two-layer turbulent thermal convection Y.-C. Xie and K.-Q. Xia 2013-07-05 Journal of Fluid Mechanics
Dynamics of the large-scale circulation in high-Prandtl-number turbulent thermal convection Y.-C. Xie, P. Wei and K.-Q. Xia 2013-02-01 Journal of Fluid Mechanics
20条目每页4每个页面的条目数
8每个页面的条目数
20每个页面的条目数
40每个页面的条目数
60每个页面的条目数
显示7结果中的1-7。
上一页面
页面1
下一页
English Version - 谢 毅超 (XIE Yichao)(1.)Basic Information
Prof. Yi-Chao XIE, PhD
School of Aerospace Engineering
Xi'an Jiaotong University, Xi'an China
Yong talents Support Plan of Xi'an Jiaotong University
ORCID:https://orcid.org/0000-0002-2159-4579
(7.)Contact
Email:yichao.xie@xjtu.edu.cn
Address: RM 319 (North), School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, PR China
(5.)Scientific Research
Dr Yi-Chao XIE’s research is mainly related to experimental study of fluid turbulence, especially thermally-driven turbulence. The current research topics include (1)heat transport in thermally-driven turbulence, (2) dynamics of coherent structures in turbulent flows (the large-scale circulation and plumes), (3) effects of roughness and (4) effects of polymer additives on thermally-driven turbulence.
(4.)Honors
We currently have vacancies for postdoc researchers in the field of fluid turbulence. We also admit master and PhD program students for the year 2020. Intrested candidate please send your CV togerher with list of publication to me via email.
(2.)Positions
From Nov 2019 to now: Associate Professor (Tenure Tracked PI), Xi'an Jiaotong Univeristy, Xi'an, PR China
From Jun 2016 to Oct 2019: Research Associate, The Chinese University of Hong Kong, Hong Kong, PR China
(3.)Education
From Oct 2012 to Apr 2016, The Chinese University of Hong Kong, PhD
From Aug 2010 to Sep 2012, The Chinese University of Hong Kong, MPhil
From Sep 2006 to Jul 2010, Northwest University (China), BSc
论文期刊
没有找到条目。
论文标题作者发表/完成日期期刊名称
Universal fluctuations in the bulk of Rayleigh–Bénard turbulence Y.-C. Xie, B.-Y.-C. Cheng, Y.-B. Hu, K.-Q. Xia 2019-09-06 Journal of Fluid Mechanics
Flow Topology Transition via Global Bifurcation in Thermally Driven Turbulence Y.-C. Xie, G.-Y. Ding and K.-Q. Xia 2018-05-22 Physical Review Letters
Turbulent thermal convection over rough plates with varying roughness geometries Y.-C. Xie and K.-Q. Xia 2017-08-25 Journal of Fluid Mechanics
Statistical characterization of thermal plumes in turbulent thermal convection S.-Q. Zhou, Y.-C. Xie, C. Sun and K.-Q. Xia 2016-09-12 Physical Review Fluids
Effects of polymer additives in the bulk of turbulent thermal convection Y.-C. Xie, S.-D. Huang, D. Funfschilling, X.-M. Li, R. Ni and K.-Q. Xia 2015-11-04 Journal of Fluid Mechanics
Dynamics and flow coupling in two-layer turbulent thermal convection Y.-C. Xie and K.-Q. Xia 2013-07-05 Journal of Fluid Mechanics
Dynamics of the large-scale circulation in high-Prandtl-number turbulent thermal convection Y.-C. Xie, P. Wei and K.-Q. Xia 2013-02-01 Journal of Fluid Mechanics
20条目每页4每个页面的条目数
8每个页面的条目数
20每个页面的条目数
40每个页面的条目数
60每个页面的条目数
显示7结果中的1-7。
上一页面
页面1
下一页
Introduction to My Research Works - 谢 毅超 (XIE Yichao)Blank
Introduction of the research works (Last Updated 2019-12-31)
The main research works I did in the past focuses on heat transport and dynamics of coherent structures in thermally-driven turbulence. They can be categrized into the following main research topics:
(a) Heat transport by thermally-driven turbulence
1. Manupulating heat transport scaling in turbulent convection using wall roughness
One of the key issues in the study of turbulent thermal convection is to understand the heat transport efficiency by the convective flow. This is usually expressed in terms of a scaling relation between the dimensionless heat transprot efficiency, namely the Nusselt number Nu, and the dimensionless drivingh force of the system, i.e., the Rayleigh number Ra.
In this work, we demonstrate that the heat transport can be manupulated using wall roughness (see fig.1). We found three regimes of the heat transport scaling. The boundaries between different regimes depends on the typical length scales of the system, i.e., the roughness height, the thermal boundary layer thickness and the viscous boundary layer thickness. In the heat transprot enhaced regime, we showed that the heat transport scaling could be manupulated using a roughness parameter $lambda$, which is defined as the inverse of the aspect ratio of the roughness element (see fig. 2).
Refrences: Xie and Xia, Journal of Fluid Mechanics, 825,573-599, 2017.
Fig.1 Photograph of the rough plate with roughness parameter $lambda$=0.5. (a) Top view; (b) Side view.
Fig.2 The exponent of the heat transport scaling with incresing the roughness parameter $lambda$.
2. Heat transport enhancement by polymer additives
The effect of polymer induced drag reduction has been well-know since the pineer work by Toms in 1948. This technique has been utilized to enhace the oil transport in pipelines. The effects of polymer on turbulent convective flows is less studied. We showed, through combied velocity and temperature measurement, that polymer additives can significantly enhance the heat transport in the bulk of turbulent convection (see fig. 3). We also illustrate that the possible mechanism for such enahcement is that on one hand, polymer enhances the coherency of thermal plumes which are the fundenmenal heat carriers, and on the other hand, polymer reduces the random fluctuations that does not contribute to heat transport.
Reference:Xie, Huang, Funfschilling, Li, Ni and Xia,Journal of Fluid Mechanics,784,R3, 2015.
Fig.3 The normalized time averaged heat transport in the bulk Jz(c)/Jz(0) as a function of polymer concentration c.
(b) Dynamics of coherent structures in turbulent flows
One facinating feature of fluid turbulence is the emergence of cohernt structures. These structures are mainly responsible for the momentum and heat transport of the systems. In turbulent thermal convection, the coherent sturcutres are in the form of a system-sized large scale circulation (LSC). This LSC is formed by the self-organizationof another fundmental coherent sturucure, namely thermal plumes.
1. Flow topology transition via global bifurcation
In this work, we present experimental evidences of flow topology transition from a high-symmetry state to a low- symmetry state via global bifurcation with the increase of turbulence level in thermally driven turbulence (see fig.4). The two states are characterized by different flow structures and distinctive heat transport efficiencies. This transition cor- responds to a spontaneous symmetry breaking in a system far away from equilibrium. In the transition zone, the system exhibits stochastic switching between two long- lived metastable states. As spontaneous symmetry breaking is one of the unifying themes in modern physics, such as in particle and condensed matter physics; the present finding could thus be of interest to a wider range of fields beyond fluid dynamics.
Reference: Xie, Ding and Xia,Physical Review Lettes,120, 214501, 2018
Fig.4 Mean flow structure for (a) Ra=1.2e8 and (b) Ra=1.1e9.
2. Dynamics and flow coupling in two-layered turbulent thermal convection
Reference: Xie and Xia,Journal of Fluid Mechanics,728, R1, 2013
Fig.5 Schematics of the themal-couling mode and the viscous coupling mode in two-layered turbulent thermal convection
3. Dynamics of the large-scale circulation in high-Prandtl-number turbulent thermal convection
Reference: Xie, Wei and Xia, Journal of Fluid Mechanics, 717, 322-346, 2013