删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西安电子科技大学物理与光电工程学院导师教师师资介绍简介-林正喆

本站小编 Free考研考试/2021-07-08


基本信息
林正喆副教授 硕士生导师
物理与光电工程学院
学科:凝聚态物理
研究方向:第一性原理计算
二维纳米材料理论设计

联系方式
电子邮箱:zzlin@xidian.edu.cn
办公地点:北校区 西大楼II区406


个人简介
2002年9月—2006年7月,复旦大学化学系,学士学位
2006年9月—2012年7月,复旦大学现代物理研究所,理学博士学位
2012年7月至今,西安电子科技大学从事教学科研工作

研究方向
主要研究为二维材料纳米器件基本理论。从基本电子性质出发,用理论工具发掘有潜力的新兴二维材料材料。从理论上提出了准确预测纳米体系的寿命量子化统计物理模型。在二维磁有序的研究中,从理论上分析了超出Mermin-Wagner定理及各向同性Heisenberg模型的产生低维磁序物理机制,揭示二维磁体在自旋电子学和高速信息存储上的独特优势。在二维材料限域催化方法的研究中,提出了石墨炔等二维材料在二氧化碳还原中的催化机理。迄今主持国家自然科学基金项目1项,陕西省自然科学基金项目1项,发表第一作者SCI论文16篇(中科院I区3篇,II区5篇,III区7篇,IV区2篇)。

研究进展
二维磁性离子晶体半导体的稳定性和交换作用机理研究 Phys. Lett. A395, 127229 (2021).
由于离子键的各向同性,二维离子晶体是否能稳定存在,是一个基本物理问题。
我们探讨了二维离子晶体存在的可能性,并研究了二维磁性稀土离子晶体EuS中的交换作用。
分析了稀土离子Eu2+之间传递交换作用的4f-5d三阶动态轨道跃迁机制。

kagome晶格狄拉克费米子有效质量调控 Phys. Status Solidi RRL14, ** (2020).
kagome晶格具有奇异量子磁性来承载Dirac电子态,可导致拓扑Chern绝缘相。
我们从理论上解释了Fe3Sn2中狄拉克电子的形成机理,阐明了自旋轨道耦合与有效质量的关系。
在此基础上,揭示了自旋极化Dirac体系中新物理的起源,提出了控制Dirac电子有效质量的方法。

原子层Fe3GeTe2磁隧道结和自旋滤波器理论研究 Adv. Elec. Mat.6, ** (2020).
通过非平衡格林函数理论,预测出Cu电极之间的单/双层Fe3GeTe2弹道运输的自旋极化为53/85%。
在超薄的Fe3GeTe2-hBN-Fe3GeTe2异质结构中,观察到了显着的磁阻。
对于单层/双层Fe3GeTe2异质结,磁阻达到183/252%。

石墨烯与石墨炔二维限域催化CO2还原研究 Int. J. Energ. Res.44, 784 (2020). Appl. Surf. Sci.479, 685 (2019).
二维限域催化为近年来提出的一种新的催化原理。
其利用二维材料覆盖的量子限域效应,改变反应势能面,降低反应势垒,提高材料表面的非均相催化能力。
本研究分析了石墨烯、石墨炔限域催化CO2还原的机理、反应过程自由能变化,总结出决定催化能力的关键物理指标。





基本信息
林正喆副教授 硕士生导师
物理与光电工程学院
学科:凝聚态物理
研究方向:第一性原理计算
二维纳米材料理论设计

联系方式
电子邮箱:zzlin@xidian.edu.cn
办公地点:北校区 西大楼II区406


个人简介
2002年9月—2006年7月,复旦大学化学系,学士学位
2006年9月—2012年7月,复旦大学现代物理研究所,理学博士学位
2012年7月至今,西安电子科技大学从事教学科研工作

研究方向
主要研究为二维材料纳米器件基本理论。从基本电子性质出发,用理论工具发掘有潜力的新兴二维材料材料。从理论上提出了准确预测纳米体系的寿命量子化统计物理模型。在二维磁有序的研究中,从理论上分析了超出Mermin-Wagner定理及各向同性Heisenberg模型的产生低维磁序物理机制,揭示二维磁体在自旋电子学和高速信息存储上的独特优势。在二维材料限域催化方法的研究中,提出了石墨炔等二维材料在二氧化碳还原中的催化机理。迄今主持国家自然科学基金项目1项,陕西省自然科学基金项目1项,发表第一作者SCI论文16篇(中科院I区3篇,II区5篇,III区7篇,IV区2篇)。

研究进展
二维磁性离子晶体半导体的稳定性和交换作用机理研究 Phys. Lett. A395, 127229 (2021).
由于离子键的各向同性,二维离子晶体是否能稳定存在,是一个基本物理问题。
我们探讨了二维离子晶体存在的可能性,并研究了二维磁性稀土离子晶体EuS中的交换作用。
分析了稀土离子Eu2+之间传递交换作用的4f-5d三阶动态轨道跃迁机制。

kagome晶格狄拉克费米子有效质量调控 Phys. Status Solidi RRL14, ** (2020).
kagome晶格具有奇异量子磁性来承载Dirac电子态,可导致拓扑Chern绝缘相。
我们从理论上解释了Fe3Sn2中狄拉克电子的形成机理,阐明了自旋轨道耦合与有效质量的关系。
在此基础上,揭示了自旋极化Dirac体系中新物理的起源,提出了控制Dirac电子有效质量的方法。

原子层Fe3GeTe2磁隧道结和自旋滤波器理论研究 Adv. Elec. Mat.6, ** (2020).
通过非平衡格林函数理论,预测出Cu电极之间的单/双层Fe3GeTe2弹道运输的自旋极化为53/85%。
在超薄的Fe3GeTe2-hBN-Fe3GeTe2异质结构中,观察到了显着的磁阻。
对于单层/双层Fe3GeTe2异质结,磁阻达到183/252%。

石墨烯与石墨炔二维限域催化CO2还原研究 Int. J. Energ. Res.44, 784 (2020). Appl. Surf. Sci.479, 685 (2019).
二维限域催化为近年来提出的一种新的催化原理。
其利用二维材料覆盖的量子限域效应,改变反应势能面,降低反应势垒,提高材料表面的非均相催化能力。
本研究分析了石墨烯、石墨炔限域催化CO2还原的机理、反应过程自由能变化,总结出决定催化能力的关键物理指标。





科学研究
研究内容
1、第一性原理计算
2、二维材料
3、纳米器件寿命与热力学稳定性理论
4、二维纳米光电器件理论设计
主持项目
二维铁磁材料中Dirac费米子的相对论性调控及拓扑性质研究 陕西省自然科学基础研究计划(批准号:2021JM-117) 2021.01-2022.12 4万
基于石墨炔的新能源材料研究 陕西省自然科学基金(批准号:2018JQ1034) 2018.01-2019.12 3万
一种新的预测纳米体系寿命的量子统计物理模型 国家自然科学基金 (批准号:**) 2014.01-2016.12 25万
基于单原子链的纳米电路和光电转换研究 基本科研业务费




学术论文
2021年:
[1]L.-R. Cheng,Z.-Z. Lin*, X.-M. Li and Xi Chen*,Can T-carbon serve as Li storage material and Li battery anode?, Mat. Adv. justaccepted
[2] L.-R. Cheng and Z.-Z. Lin*, Toward Two-Dimensional Ionic Crystals with Intrinsic Ferromagnetism, Phys. Lett. A395, 127229 (2021).
[3]X. Chen,Z.-Z. Lin*and L.-R. Cheng, Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2,Chin. Phys. B30, 047502 (2021).
2020年:
[1] Z.-Z. Lin*and X. Chen, Ultra-Thin Scattering Spin Filter and Magnetic Tunnel Junction Implemented by Ferromagnetic 2D van der Waals Material, Adv. Elec. Mat. 6, ** (2020).
[2] Z.-Z. Lin*, X. Chen, C. Yin, L. Yue and F.-X. Meng,Electrochemical CO2Reduction in Confined Space: Enhanced Activity of Metal Catalysts by Graphene Overlayer, Int. J. Energ. Res. 44, 784 (2020).
[3] Z.-Z. Lin*and X. Chen,Tunable massive Dirac fermions in ferromagnetic Fe3Sn2 kagome lattice,Phys. Status Solidi RRL 14, ** (2020).
[4] Z.-Z. Lin*and X. Chen,1T GdN2 Monolayer — Spin-Orbit Induced Magnetic Dirac Semiconductor stable at Room Temperature,Appl. Surf. Sci. 529, 147129 (2020).
2019年:
[1] X. Chen*,Z.-Z. Lin, M. Ju and L.-X. Guo*,Confined electrochemical catalysis under cover: Enhanced CO2 reduction at the interface between graphdiyne and Cu surface, Appl. Surf. Sci.479, 685 (2019).
2018年:
[1] X. Chen, Z.-Z. Lin* and M. Ju, Controllable Band Alignment Transition in InSe-MoS2 van der Waals Heterostructure,Phys. Status Solidi RRL 12, ** (2018).
[2] X. Chen and Z.-Z. Lin*,A Primary Exploration to Quasi-Two-Dimensional Rare-Earth Ferromagnetic Particles: Holmium-Doped MoS2 Sheet as Room-Temperature Magnetic Semiconductor, J. Nanopart. Res.20, 129 (2018).
[3] X. Chen and Z.-Z. Lin*, Single-layer graphdiyne-covered Pt(111) surface: Improved catalysis confined under two-dimensional overlayer,J. Nanopart. Res.20, 136 (2018).
2017年:
[1] Z.-Z. Lin*, Two-dimensional C12Mn2/C12Cr2 as room-temperature half metal/antiferromagnetic semiconductor: A systematical study, Phys. Chem. Chem. Phys.19, 3394 (2017).
2016年:
[1]Z.-Z. Lin*,Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation, Carbon 108,343 (2016).
[2]Z.-Z. Lin*and X. Chen,Transition-metal-decorated germanene as promising catalyst for removing CO contamination in H2,Materials & Design 107, 82 (2016).
[3] C. Yin, Z.-Z. Lin*, M. Li and H. Tang, Understanding the formation mechanism of two-dimensional atomic islands on crystal surfaces by the condensing potential model,Z. Naturforsch. A71, 321 (2016).
[4] Q. Wei*, H. Yan, X. Zhu,Z. Linand R. Yao, Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide,Z. Naturforsch. A71, 1 (2016).
2015年:
[1]Z.-Z. Lin*, Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst,Carbon86, 301 (2015).
[2] Z.-Z. Lin*,Theoretical investigation on isomer formation probability and free energy of small C clusters,Chin. Phys. B 24, 068201 (2015).
[3]Z.-Z. Lin*,Tunable laser and photocurrents from linear atomic C chains,Mod. Phys. Lett. B 29,** (2015).
[4] Q. Fan, Q. Wei*, C. Chai, H. Yan, M. Zhang, Z. Lin, Z. Zhang, J. Zhang, and D. Zhang,Structural, mechanical, and electronic properties of P3m1-BCN,J. Phys. Chem. Solids 79, 89(2015).
[5] Q. Wei*, M. Zhang, H. Yan, R. Li, X. Zhu, Z. Lin and R. Yao,A New Superhard Phase of C3N2 Polymorphs,Z. Naturforsch. A 70, 1001 (2015).
2014年:
[1]Z.-Z. Lin*, Q. Wei and X. Zhu,Modulating the electronic properties of graphdyine nanoribbons,Carbon66, 504 (2014).
[2]Z.-Z. Lin*and X. Chen,Spin-polarized current generated by magnetic Fe atomic chain, Nanotechnology25, 235202 (2014).
[3]Z.-Z. Lin*,Theoretical investigation of thermodynamic balance between cluster isomers and statistical model for predicting isomerization rate, J. Nanopart. Res. 16, 2201 (2014).
[4]Z.-Z. Lin, W.-Y. Li, and X.-J. Ning*,A statistical model for predicting thermal chemical reaction rate, Chin. Phys. B23, 050501 (2014).
[5] Y.-G. Xu, C. Ming, Z.-Z. Lin, F.-X. Meng, J. Zhuang, and X.-J. Ning*, Can graphynes turn into graphene at room temperature?, Carbon73, 283 (2014).
[6] Q. Wei*, M. Zhang*, H. Yan, Z. Lin and X. Zhu, Structural, electronic and mechanical properties of Imma-carbon, EPL107, 27007 (2014).
2013年:
[1] Z.-Z. Lin* and X. Chen,Predicting the chemical stability of monatomic chains,EPL101, 48002 (2013).
[2] Z.-Z. Lin* and X. Chen,Single molecule capture by a doped monatomic carbon chain, J. Phys.: Codens Matter25, 205302 (2013).
[3]Z.-Z. Lin* and X. Chen,Ultrafast dynamics and fragmentation of C60 in intense laser pulses,Phys. Lett. A 377, 797 (2013).
[4] W.-F. Yu, Z.-Z. Lin and X.-J. Ning*,Mass dependence of the Soret coefficient for atomic diffusion in condensed matter, Phys. Rev. E87, 062311 (2013).
[5]W.-F. Yu,Z.-Z. Linand X.-J. Ning*,Simple statistical model for predicting thermal atom diffusion on crystal surfaces,Chin. Phys. B22, 116802 (2013).
[6] Q. Wei*, M. Zhang, L. Guo, H. Yan, X. Zhu, Z. Lin, P. Guo,Ab initio studies of novel carbon nitride phase C2N2(CH2),Chem. Phys.415, 36(2013).
2012年:
[1] Z.-Z. Lin, J. Zhuang, and X.-J. Ning*,High-efficient tunable infrared laser from monatomic carbon chains,EPL97, 27006 (2012).
[2] W.-Y. Li, Z.-Z. Lin, J.-J. Xu, and X.-J. Ning*,A statistical model for predicting thermal chemical reaction rate:Application to bimolecule reactions,Chin. Phys. Lett.29, 080504 (2012).
[3]陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京*,铂纳米颗粒生长和结构的理论预测,物理学报61, 076801 (2012).
[4] C. Ming, Z.-Z. Lin, R.-G. Cao, W.-F. Yu, and X.-J. Ning*,A scheme for fabricating single wall carbon nanocones standing on me[ant]tal surfaces and an evaluation of their stability,Carbon50, 2651 (2012).
[5] C. Ming, Z.-Z. Lin, J. Zhuang, and X.-J. Ning*,Electronic rectification devices from carbon nanocones,Appl. Phys. Lett.100, 063119 (2012).
2011年:
[1] Z.-Z. Lin, W.-F. Yu, Y. Wang, and X.-J. Ning*,Predicting the stability of nanodevices,EPL94, 40002 (2011).
[2] Z.-Z. Lin and X.-J. Ning*,Controlling the electronic properties of monatomic carbon chains,EPL95, 47102 (2011).
[3] Z.-Z. Lin, X. Chen, C. Yin, H. Tang, Y.-C. Hu, and X.-J. Ning*,Theoretical prediction of the growth and surface structure of Pt and Ni nanoparticles,EPL96, 66005 (2011).
2010年:
[1] Z.-Z. Lin, C. Ming, Y. Wang, W. Zhang, J. Zhuang, and X.-J. Ning*,Excitation of large-scale delocalized quantum state by local interactions,EPL92, 17005 (2010).
[2] Z.-Z. Lin, J. Zhuang, and X.-J. Ning*, Multi-photon resonance enhanced super high-order harmonic generation, Chin. Phys. B 19, 113204 (2010).
[3] X.-J. Han, Y. Wang, Z.-Z. Lin, W. Zhang, J. Zhuang, and X.-J. Ning*,Statistical model for small clusters transforming from one isomer to another,J. Chem.Phys.132, 064103 (2010).
[4] C. Ming, Z.-Z. Lin, Y. Wang, W. Zhang, J. Zhuang, and X.-J. Ning*,Ion Acceleration by the Coulomb Explosion of Graphene,Jpn. J. Appl. Phys.49, 045103 (2010).
[5] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京*,团簇异构体生长几率的理论预测,物理学报59, 3345 (2010).
[6] 曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京*,一种制备单原子碳链的方案,物理学报59, 6438 (2010).
2010年以前:
[1] Y. Wang, Z.-Z. Lin, W. Zhang, J. Zhuang, and X.-J. Ning*,Pulling long linear atomic chains from grapheneMolecular dynamics simulations,Phys. Rev. B80, 233403 (2009).
[2] Y. Wang, X.-J. Ning*, Z.-Z. Lin, and P. Li, Preparation of long monatomic carbon chainsMolecular dynamics studies, Phys. Rev. B 76, 165423 (2007).
[3] J. Gao, Z.-Z. Lin, and X.-J. Ning*,Isomers of C36 and free energy criteria for cluster growth,J. Chem. Phys126, 174309 (2007).




课程教学
物理学发展与文化
1.物理学概述与古代科学2.从中世纪到文艺复兴3.经典力学的诞生4.十八和十九世纪的力学
5.热现象的本质 6.电与磁7.从光到相对论

大学物理(I) 本课程包含经典力学、振动与波、狭义相对论
课件 打包下载
阅读材料: 平行轴定理的证明 形象理解洛伦兹变换 耶鲁大学开放课程:洛伦兹变换
模拟试题:模拟试题1 模拟试题2 模拟试题3

大学物理(II)本课程包含静电场、稳恒磁场、电磁感应、光学、热学、近代物理
课件 打包下载
静电场: 1.库仑定律 2.高斯定理 3.高斯定理习题课4.电势能5.场强与电势的关系
6.静电场习题课I7.导体 8.电介质 9.电容 10.静电场习题课II
静磁场: 1.稳恒电流的磁场2.运动电荷的磁场 3.磁通量 4.安培环路定理 5.安培力
6.洛伦兹力 7.磁介质
电磁感应:1.法拉第定律 2.动生电动势 3.感生电动势 4.自感 5.互感
6.磁场的能量 7.位移电流
光学: 1.双缝干涉 2.薄膜干涉和牛顿环 3.单缝衍射 4.光栅衍射 5.光的偏振
热学: 1.分子运动论 2.麦克斯韦分布 3.能均分定理 4.热力学第一定律 5.绝热和循环过程
量子物理:1.黑体辐射和光电效应 2.康普顿散射 3.波粒二象性 4.氢原子的波尔模型 5.量子力学基础
6.氢原子的量子力学描写 7.激光和能带
阅读材料: 静电场的唯一性定理安培示零实验 毕奥_萨伐尔定律的建立过程
特鲁顿-诺伯实验及其解释电磁学基本实验定律的建立 电磁场的动量和角动量
模拟试题:模拟试题1 模拟试题2 模拟试题3

大学物理习题下载(2016.01.12更新):大学物理习题_上册 大学物理习题_下册
大学物理习题答案(2016.01.12更新): 上册 1.质点力学 2.刚体力学3.机械振动和机械波4.狭义相对论
下册 5.静电场 6.稳恒磁场7.电磁感应8.波动光学9.热学10.近代物理基础


力学 习题解答




Profile
Zheng-Zhe Lin
Associate Professor
School of Physics and Optoelectronic Engineering
Subject: Condensed Matter Physics
Research direction:
first-principles calculation
2D materials theory

Contact Information
Email: zzlin@xidian.edu.cn


Introduction
EDUCATION
2002-2006, Department of Chemistry, Fudan University, B. S. in Chemistry
2006-2012, Institute of Modern Physics, Fudan University, Ph.D. in Physics
EMPLOYMENT
2012-present, Lecturer, Xidian University
2015-present, Associate Professor, Xidian University
RESEARCH INTERESTS
1. First principles calculation
2. 2D materials
3. The theory ofthermodynamic stability of nanodevices
4. Theoretical design of 2D nano devices

Recent Publications
Study onstability and exchange mechanism of 2D magnetic ionic-crystal semiconductors
Phys. Lett. A395, 127229 (2021).
Because of the isotropy of ionic bonds, the existence of 2D ionic crystals is a basic physical question.
The existence of 2D magnetic rare-earth ionic crystal EuS is then studied along with theexchange interactions.
The 4f-5d third-order dynamic transitionfor transferring exchange interactions between Eu2+ is analyzed.

Effective mass control of Dirac fermions in kagome lattice Phys. Status Solidi RRL14, ** (2020).
Kagome latticecarries Dirac electronic states andleads to topological Chern insulating phase.
We study the Dirac states in Fe3Sn2and clarified the relationship between spin-orbit coupling and effective mass.
The origin of the new physics in the spin-polarized Dirac systems was revealed.
A method to control the effective mass of Dirac electrons was proposed.

Theoretical study of 2DFe3GeTe2 magnetic tunnel junction and spin filter Adv. Elec. Mat. 6, ** (2020).
By the non-equilibrium Green's function theory, wepredicted that the spin polarization of ballistic transport through single/double layer Fe3GeTe2 is 53/85%.
In the ultra-thin Fe3GeTe2-hBN-Fe3GeTe2 heterostructure, significant magnetoresistance was observed.
For single-layer/double-layer Fe3GeTe2 heterojunction, the magnetoresistance reaches 183/252%.

Study on the 2D-confined CO2 reduction under graphene and graphene covers
Int. J. Energ. Res.44, 784 (2020). Appl. Surf. Sci.479, 685 (2019).
Quantum confinement of 2D covers on metal surfaces could change the potential energy surfaces andthe reaction barriers.
The heterogeneous catalysis ability of the metalsurfaces is then improved.
The mechanism of CO2 reduction and the key physical factors determining the catalytic ability are summarized.





Research
ResearchProjects:
1.Research on the modulation andtopological properties of relativisticDirac fermions in 2D ferromagnetic materials,Natural Science Basic Research Program of Shaanxi 2021.01-2022.12
1.Research on new energy materials based on graphyne, Natural Science Foundation of Shaanxi Province 2018.01-2019.12
2. A new quantum statistical physical model for predicting the lifetime of nanosystems National Natural Science Foundation of China (approval number: **) 2014.01-2016.12




Papers
2021:
[1] L.-R. Cheng and Z.-Z. Lin*, Toward Two-Dimensional Ionic Crystals with Intrinsic Ferromagnetism,Phys. Lett. A395, 127229 (2021).
[2]X. Chen,Z.-Z. Lin*and L.-R. Cheng,Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2,Chin. Phys. B30, 047502 (2021).
2020:
[1] Z.-Z. Lin*and X. Chen, Ultra-Thin Scattering Spin Filter and Magnetic Tunnel Junction Implemented by Ferromagnetic 2D van der Waals Material, Adv. Elec. Mat. 6, ** (2020).
[2] Z.-Z. Lin*, X. Chen, C. Yin, L. Yue and F.-X. Meng,Electrochemical CO2Reduction in Confined Space: Enhanced Activity of Metal Catalysts by Graphene Overlayer, Int. J. Energ. Res. 44, 784 (2020).
[3] Z.-Z. Lin*and X. Chen,Tunable massive Dirac fermions in ferromagnetic Fe3Sn2 kagome lattice,Phys. Status Solidi RRL 14, ** (2020).
[4] Z.-Z. Lin*and X. Chen,1T GdN2 Monolayer — Spin-Orbit Induced Magnetic Dirac Semiconductor stable at Room Temperature,Appl. Surf. Sci. 529, 147129 (2020).
2019:
[1] X. Chen*,Z.-Z. Lin, M. Ju and L.-X. Guo*,Confined electrochemical catalysis under cover: Enhanced CO2 reduction at the interface between graphdiyne and Cu surface, Appl. Surf. Sci.479, 685 (2019).
2018:
[1] X. Chen, Z.-Z. Lin* and M. Ju, Controllable Band Alignment Transition in InSe-MoS2 van der Waals Heterostructure,Phys. Status Solidi RRL 12, ** (2018).
[2] X. Chen and Z.-Z. Lin*,A Primary Exploration to Quasi-Two-Dimensional Rare-Earth Ferromagnetic Particles: Holmium-Doped MoS2 Sheet as Room-Temperature Magnetic Semiconductor, J. Nanopart. Res.20, 129 (2018).
[3] X. Chen and Z.-Z. Lin*, Single-layer graphdiyne-covered Pt(111) surface: Improved catalysis confined under two-dimensional overlayer,J. Nanopart. Res.20, 136 (2018).
2017:
[1] Z.-Z. Lin*, Two-dimensional C12Mn2/C12Cr2 as room-temperature half metal/antiferromagnetic semiconductor: A systematical study, Phys. Chem. Chem. Phys.19, 3394 (2017).
2016:
[1]Z.-Z. Lin*,Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation, Carbon 108,343 (2016).
[2]Z.-Z. Lin*and X. Chen,Transition-metal-decorated germanene as promising catalyst for removing CO contamination in H2,Materials & Design 107, 82 (2016).
[3] C. Yin, Z.-Z. Lin*, M. Li and H. Tang, Understanding the formation mechanism of two-dimensional atomic islands on crystal surfaces by the condensing potential model,Z. Naturforsch. A71, 321 (2016).
[4] Q. Wei*, H. Yan, X. Zhu,Z. Linand R. Yao, Theoretical Investigations on the Elastic and Thermodynamic Properties of Rhenium Phosphide,Z. Naturforsch. A71, 1 (2016).
2015:
[1]Z.-Z. Lin*, Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst,Carbon86, 301 (2015).
[2] Z.-Z. Lin*,Theoretical investigation on isomer formation probability and free energy of small C clusters,Chin. Phys. B 24, 068201 (2015).
[3]Z.-Z. Lin*,Tunable laser and photocurrents from linear atomic C chains,Mod. Phys. Lett. B 29,** (2015).
[4] Q. Fan, Q. Wei*, C. Chai, H. Yan, M. Zhang, Z. Lin, Z. Zhang, J. Zhang, and D. Zhang,Structural, mechanical, and electronic properties of P3m1-BCN,J. Phys. Chem. Solids 79, 89(2015).
[5] Q. Wei*, M. Zhang, H. Yan, R. Li, X. Zhu, Z. Lin and R. Yao,A New Superhard Phase of C3N2 Polymorphs,Z. Naturforsch. A 70, 1001 (2015).
2014:
[1]Z.-Z. Lin*, Q. Wei and X. Zhu,Modulating the electronic properties of graphdyine nanoribbons,Carbon66, 504 (2014).
[2]Z.-Z. Lin*and X. Chen,Spin-polarized current generated by magnetic Fe atomic chain, Nanotechnology25, 235202 (2014).
[3]Z.-Z. Lin*,Theoretical investigation of thermodynamic balance between cluster isomers and statistical model for predicting isomerization rate, J. Nanopart. Res. 16, 2201 (2014).
[4]Z.-Z. Lin, W.-Y. Li, and X.-J. Ning*,A statistical model for predicting thermal chemical reaction rate, Chin. Phys. B23, 050501 (2014).
[5] Y.-G. Xu, C. Ming, Z.-Z. Lin, F.-X. Meng, J. Zhuang, and X.-J. Ning*, Can graphynes turn into graphene at room temperature?, Carbon73, 283 (2014).
[6] Q. Wei*, M. Zhang*, H. Yan, Z. Lin and X. Zhu, Structural, electronic and mechanical properties of Imma-carbon, EPL107, 27007 (2014).
2013:
[1] Z.-Z. Lin* and X. Chen,Predicting the chemical stability of monatomic chains,EPL101, 48002 (2013).
[2] Z.-Z. Lin* and X. Chen,Single molecule capture by a doped monatomic carbon chain, J. Phys.: Codens Matter25, 205302 (2013).
[3]Z.-Z. Lin* and X. Chen,Ultrafast dynamics and fragmentation of C60 in intense laser pulses,Phys. Lett. A 377, 797 (2013).
[4] W.-F. Yu, Z.-Z. Lin and X.-J. Ning*,Mass dependence of the Soret coefficient for atomic diffusion in condensed matter, Phys. Rev. E87, 062311 (2013).
[5]W.-F. Yu,Z.-Z. Linand X.-J. Ning*,Simple statistical model for predicting thermal atom diffusion on crystal surfaces,Chin. Phys. B22, 116802 (2013).
[6] Q. Wei*, M. Zhang, L. Guo, H. Yan, X. Zhu, Z. Lin, P. Guo,Ab initio studies of novel carbon nitride phase C2N2(CH2),Chem. Phys.415, 36(2013).
2012:
[1] Z.-Z. Lin, J. Zhuang, and X.-J. Ning*,High-efficient tunable infrared laser from monatomic carbon chains,EPL97, 27006 (2012).
[2] W.-Y. Li, Z.-Z. Lin, J.-J. Xu, and X.-J. Ning*,A statistical model for predicting thermal chemical reaction rate:Application to bimolecule reactions,Chin. Phys. Lett.29, 080504 (2012).
[3]陈熙, 林正喆, 殷聪, 汤浩, 胡蕴成, 宁西京*,铂纳米颗粒生长和结构的理论预测,物理学报61, 076801 (2012).
[4] C. Ming, Z.-Z. Lin, R.-G. Cao, W.-F. Yu, and X.-J. Ning*,A scheme for fabricating single wall carbon nanocones standing on me[ant]tal surfaces and an evaluation of their stability,Carbon50, 2651 (2012).
[5] C. Ming, Z.-Z. Lin, J. Zhuang, and X.-J. Ning*,Electronic rectification devices from carbon nanocones,Appl. Phys. Lett.100, 063119 (2012).
2011:
[1] Z.-Z. Lin, W.-F. Yu, Y. Wang, and X.-J. Ning*,Predicting the stability of nanodevices,EPL94, 40002 (2011).
[2] Z.-Z. Lin and X.-J. Ning*,Controlling the electronic properties of monatomic carbon chains,EPL95, 47102 (2011).
[3] Z.-Z. Lin, X. Chen, C. Yin, H. Tang, Y.-C. Hu, and X.-J. Ning*,Theoretical prediction of the growth and surface structure of Pt and Ni nanoparticles,EPL96, 66005 (2011).
2010:
[1] Z.-Z. Lin, C. Ming, Y. Wang, W. Zhang, J. Zhuang, and X.-J. Ning*,Excitation of large-scale delocalized quantum state by local interactions,EPL92, 17005 (2010).
[2] Z.-Z. Lin, J. Zhuang, and X.-J. Ning*, Multi-photon resonance enhanced super high-order harmonic generation, Chin. Phys. B 19, 113204 (2010).
[3] X.-J. Han, Y. Wang, Z.-Z. Lin, W. Zhang, J. Zhuang, and X.-J. Ning*,Statistical model for small clusters transforming from one isomer to another,J. Chem.Phys.132, 064103 (2010).
[4] C. Ming, Z.-Z. Lin, Y. Wang, W. Zhang, J. Zhuang, and X.-J. Ning*,Ion Acceleration by the Coulomb Explosion of Graphene,Jpn. J. Appl. Phys.49, 045103 (2010).




Teaching
College Physics (I) This course includes classical mechanics, vibration and wave, special relativity
College Physics (II) This course includes electrostatic field, steady magnetic field, electromagnetic induction, optics, thermal, modern physics


相关话题/光电 物理