删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
西北工业大学民航学院导师教师师资介绍简介-姜洪开
本站小编 Free考研考试/2021-06-29
相册
基本信息 The basic information
姜洪开
民航学院
博士研究生毕业
工学博士
教授
航空宇航科学
jianghk@nwpu.edu.cn
工作经历 Work Experience
2002-2006,西安交通大学仪器科学与技术专业博士
2006-2008,西北工业大学航空宇航科学与技术专业博士后
2011-2012, 加拿大英属哥伦比亚大学机械工程系国家公派访问****
2008-2014,西北工业大学航空学院副教授
2014-2019,西北工业大学航空学院教授、博士生导师
2020-,西北工业大学民航学院教授、博士生导师
教育教学 Education And Teaching
1、飞行器控制系统设计,本科生课程,56学时
2、电机控制技术,本科生课程,32学时
3、Principles and Structure of Aviation Engines,留学生课程,40学时
4、Advanced Signal Processing,研究生英文课程,40学时
5、现代信号处理及应用,研究生课程,40学时
6、智能诊断原理及应用,研究生课程,40学时
人才培养
1、指导博士生发表ESI热点论文1篇、ESI高被引论文9篇
2、指导博士生1人获2020年度国家奖学金
3、指导博士生1人获2019年度西北工业大学优秀毕业研究生
4、指导博士生1人获2018年度宝钢教育基金宝钢优秀学生特等奖(全国仅25人)
5、指导博士生2人获2018年度国家奖学金
6、指导博士生1人获2018年度西北工业大学优秀研究生标兵(年度学业测评航空学院总排名第一)
7、指导博士生1人获2018年度西北工业大学优秀研究生学术之星
8、指导博士生1人获2018年度西北工业大学博士论文创新基金重点项目
9、指导博士生1人获2017年度国家奖学金(年度学业测评航空学院总排名第一)
10、指导博士生1人获2017年度西北工业大学优秀研究生学术之星
11、指导博士生1人获2017年度西北工业大学博士论文创新基金项目
12、指导博士生1人获2016年度国家奖学金
13、指导硕士生1人获2020年度国家奖学金
14、指导硕士生2人获2020年度西北工业大学优秀毕业硕士论文
15、指导硕士生1人获2020年度西北工业大学优秀毕业研究生
16、指导硕士生1人获2019年度西北工业大学优秀毕业研究生
17、指导硕士生1人获2018年度国家奖学金
18、指导硕士生1人获2018年度西北工业大学优秀毕业研究生
19、指导硕士生1人获2018年度西北工业大学研究生创意创新种子基金项目
20、指导国际留学生1人获2017年度西北工业大学优秀毕业研究生
21、指导硕士生1人获2017年度国家奖学金
22、指导硕士生1获2017年度西北工业大学研究生创意创新种子基金项目
23、指导研究生1人获西北工业大学2015年优秀硕士学位论文一等奖
24、指导本科生4人分别获得2013年度、2014年度、2015年度和2017年度西北工业大学优秀毕业设计论文
研究生毕业去向:
中国商飞上海飞机客户服务有限公司、中国商飞上海飞机设计研究院、中航工业测控所、中航工业综合技术研究所、中航工业强度所、中航工业工业飞控所、中国燃气涡轮研究院、中国飞行试验研究院、中航工业千山电子、航天自动控制研究所、航天一院、航天三院、航天四院、航天504所、中电10所、中电14所、中电20所、中电28所、华为西安研究所、西安中兴、西北工业大学、湖南大学、山西农业大学、西安科技大学等单位。
招生信息 Admission Information
博士招生专业:
1、航空宇航科学与技术
2、航空航天安全工程
3、适航技术与管理
硕士招生专业:
1、航空航天安全工程
2、适航技术与管理
3、电子信息
4、机械
研究方向
1、飞行器故障诊断与健康管理
2、机器深度学习与智能飞行器
3、飞行器大数据分析与智能运维
4、无人机综合测试与自主控制
荣誉获奖 Awards Information
1、被评为2018年度航空学院研究生教育优秀导师
2、获工业和信息化部国防科技进步二等奖一项,飞行器XXXX故障识别技术,排名第一,2010
3、获教育部科技进步二等奖一项,机载系统XXXX故障诊断技术,2017
4、获陕西省第十一届自然科学优秀学术论文三等奖一项,排名第一,2010
5、被评为2010年度航空学院本科生和研究生教学最满意教师
6、被评为2014年度航空学院全英文授课最满意老师
7、被评为2015年度航空学院本科生教学最满意教师
8、获得2013年西北工业大学教师讲课比赛高等专业技术职务组一等奖
科学研究 Scientific Research
主持科研项目:
1、航空发动机健康状态多源深度信息融合与智能预示研究,国家自然科学基金重大研究计划培育项目,2019-2021
2、临近空间飞行器服役性能退化机理与健康自主感知方法研究,国家自然科学基金面上项目,2019-2022
3、基于深度学习的飞行器故障不确定性评估与预测研究,国家自然科学基金面上项目,2015-2018
4、基于提升多小波的航空发动机早期耦合故障诊断技术研究,国家自然科学基金面上项目,2010-2012
5、高空模拟试验供气压缩机组状态评估技术研究,航发四川燃气涡轮研究院外委项目,2020-2022
6、试验数据集成分析技术研究,航发四川燃气涡轮研究院外委项目,2020-2022
7、XXXX特征提取与定量诊断技术,预研领域基金项目,2018-2019
8、XXXX振动环境预计方法研究,航空科学基金项目,2018-2020
9、PHM软件验证设备,中航西安航空计算技术研究所项目,2017-2018
10、XXXX监测平台研制,西安空间无线电技术研究所项目,2017-2018
11、民用飞机飞控系统状态监控及故障诊断技术研究,商飞客户服务有限公司基金项目,2016-2018
12、飞行器结构健康不确定性评估方法研究,陕西省自然科学基金面上项目,2013-2014
13、航空发动机XXXX故障诊断研究,航空科学基金项目,2013-2015
14、变阻尼器半主动悬架控制系统设计,横向课题项目,2012-2013
15、民用飞机实时诊断与系统维护技术研究,千山电子项目,2008-2010
16、XXXX振动特性分析,航天一院项目,2008-2009
17、液压系统XXXX监测技术研究,航天科技创新基金项目,2006-2007
18、第二代小波构造与飞行器转子系统早期故障定量识别研究,中国博士后科学基金项目,2006-2008
学术成果 Academic Achievements
ESI热点论文和高被引论文
[1] Shao Haidong,Jiang Hongkai*, Zhang Haizhou, Duan Wenjing, Liang Tianchen, Wu Shuaipeng. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mechanical Systems and Signal Processing, 2018, 100: 743-765. (JCR1区,IF=4.116, ESI热点论文、ESI高被引论文)
[2]Jiang Hongkai*, Li Chengliang, Li Huaxing. An improved EEMD with Multiwavelet Packet for Rotating Machinery Multi-fault Diagnosis. Mechanical Systems and Signal Processing, 2013, 36: 225-239. (JCR1区,IF=4.116, ESI高被引论文)
[3]Zhenghong Wu,Jiang Hongkai*, Ke Zhao, Xingqiu Li. An adaptive deep transfer learning method for bearing fault diagnosis. Measurement, 2020, 151: 107227. (JCR2区,IF=2.791,ESI高被引论文)
[4] Shao Haidong,Jiang Hongkai*, Zhang Haizhou, Liang Tianchen. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727-2736. (JCR1区,IF=7.168, ESI高被引论文)
[5] Shao Haidong,Jiang Hongkai*, Lin Ying, Li Xingqiu. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders. Mechanical Systems and Signal Processing, 2018, 102: 278-297. (JCR1区,IF=4.116, ESI高被引论文)
[6] Shao Haidong,Jiang Hongkai*, Li Xingqiu, Wu Shuaipeng. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowledge-Based Systems, 2018, 140: 1-14. (JCR1区,IF=4.529,ESI高被引论文)
[7] Shao Haidong,Jiang Hongkai*, Zhao Huiwei, Wang Fuan. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mechanical Systems and Signal Processing, 2017, 95: 187-204. (JCR1区,IF=4.116, ESI高被引论文)
[8] Shao Haidong,Jiang Hongkai*, Wang Fuan, Zhao Huiwei. An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowledge-Based Systems, 2017, 119: 200-220. (JCR1区,IF=4.529, ESI高被引论文)
[9] Shao Haidong,Jiang Hongkai*, Wang Fuan, Wang Yanan. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet. ISA Transactions, 2017, 69, 187-201.(JCR1区,IF=3.394,ESI高被引论文)
[10] Shao haidong,jiang hongkai*, zhang xun, niu maogui. Rolling bearing fault diagnosis using an optimization deep belief network. Measurement Science and Technology, 2015, 26: 115002(17pp). (JCR2区,IF=1.585,ESI高被引论文,IOP Publishing 中国区高被引论文)
2021
[1] Liu Shaowei, Jiang Hongkai, Wu Zhenghong, Li Xingqiu.Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis. Mechanical Systems and Signal Processing, 2020, 165, 108139. (JCR1区,IF=4.116)
[2] Yao Renhe, Jiang Hongkai*, Wu Zhenghong, Wang Kaibo. Periodicity-enhanced sparse representation for rolling bearing incipient fault detection. ISA Transactions, 2021. (JCR1区,IF=3.394)
[3] Pei Zeyu, Jiang Hongkai*, Li Xingqiu, Zhang Jianjun, Liu Shaowei. Data augmentation for rolling bearing fault diagnosis using an enhanced few-shot Wasserstein auto-encoder with meta-learning. Measurement Science and Technology. 2021,32(8),084007. (JCR2区,IF=1.585)
[4] Wang Kaibo, Jiang Hongkai*, Hai Bin, Yao Renhe. Rolling bearing fault feature detection using nonconvex wavelet total variation. Measurement. 2021, 179, 109471. (JCR2区,IF=2.791)
[5] Li Xingqiu,Jiang Hongkai,Wang Ruixin, Niu Maogui. Rolling bearing fault diagnosis using optimal ensemble deep transfer network. Knowledge-Based Systems, 2021, 213, 106695. (JCR1区,IF=4.529)
[6] Li Xingqiu, Jiang Hongkai*, Liu Shaowei, Zhang Jianjun, Xu Jun. A unified framework incorporating predictive generative denoising autoencoder and deep Coral network for rolling bearing fault diagnosis with unbalanced data. Measurement, 2021, 178, 109345. (JCR2区,IF=2.791)
[7] Zhao Ke, Jiang Hongkai*, Wang Kaibo, Pei Zeyu. Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis. Knowledge-Based Systems, 2021, 222, 106974. (JCR1区,IF=4.529)
[8] Zhao, Ke, Jiang Hongkai*, Li, Xingqiu, Wang, Ruixin, Ensemble adaptive convolutional neural networks with parameter transfer for rotating machinery fault diagnosis. International Journal of Machine Learning and Cybernetics. 2021, 12: 1483-1499. (JCR2区,IF=3.1397)
[9] Wang Kaibo, Jiang Hongkai*, Wu Zhenghong, Cao Jiping, Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition, Engineering Research Express, 2021, 3, 015008.
[10] Liu Shaowei, Jiang Hongkai*, Wu Zhenghong, Li Xingqiu. Rolling bearing fault diagnosis using variational autoencoding generative adversarial networks with deep regret analysis. Measurement, 2021, 168, 108371. (JCR2区,IF=2.791)2020
[1] Li Xingqiu,Jiang Hongkai*, Maogui Niu,Ruixin Wang. An enhanced selective ensemble deep learning method for rolling bearing fautl diagnosis with beetle antennae search algorithm. Mechanical Systems and Signal Processing, 2020, 142: 1-20. (JCR1区,IF=4.116)
[2]Ruixin Wang,Jiang Hongkai*, Xingqiu Li,Shaowei Liu. A reinforcement neural architecture search method for rolling bearing fault diagnosis. Measurement, 2020, 154: 107417. (JCR2区,IF=2.791)
[3]Zhenghong Wu,Jiang Hongkai*, Tengfei Lu, Ke Zhao. A deep transfer maximum classifier discrepancy method for rolling bearing fault diagnosis under few labeled data, Knowledge-Based Systems, 2020, 196, 105814. (JCR1区,IF=4.529)
[4]Zhenghong Wu,Jiang Hongkai*, Ke Zhao, Xingqiu Li. An adaptive deep transfer learning method for bearing fault diagnosis. Measurement, 2020, 151: 107227. (JCR2区,IF=2.791,ESI高被引论文)
[5] Xiong Xiong, Jiang Hongkai*,Xingqiu Li, Maogui Niu. A Wasserstein gradient-penalty generative adversarial network with deep auto-encoder for bearing intelligent fault diagnosis. Measurement Science and Technology, 2020, 31: 045006. (JCR2区,IF=1.585)
[6]Ke Zhao, Jiang Hongkai*,Xingqiu Li,Ruixin Wang. An optimal deep sparse autoencoder with gated recurrent unit for rolling bearing fault diagnosis. Measurement Science and Technology, 2020, 31: 015005. (JCR2区,IF=1.585)
[7] Zhao, Ke, Jiang Hongkai*, Wu, Zhenghong, Lu, Tengfei. A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data. Journal of Intelligent Manufacturing, 2020. (JCR2区,IF=3.035)
2019
[1] Li Xingqiu,Jiang Hongkai*, Xiong Xiong, Liang Tianchen. Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network. Mechanism and Machine Theory, 2019, 133: 229-249. (JCR1区,IF=2.796)
[2] Wei Dongdong, Jiang Hongkai*, Shao Haidong, Li Xingqiu, Lin Ying. An optimal variational mode decomposition for rolling bearing fault feature extraction. Measurement Science and Technology, 2019, 30(5): 055004. (JCR2区,IF=1.585)
[3] Xingqiu Li, Jiang Hongkai*, Ke Zhao, Ruixin Wang. A Deep Transfer Nonnegativity-Constraint Sparse Autoencoder for Rolling Bearing Fault Diagnosis With Few Labeled Data. IEEE Access, 2019, 7: 91216-91224. (JCR1区,IF=4.098)
[4] 姜洪开,邵海东,李兴球. 基于深度学习的飞行器智能故障诊断方法. 机械工程学报,2019,55(7): 27-34.
2018
[1] Shao Haidong,Jiang Hongkai*, Zhang Haizhou, Liang Tianchen. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727-2736. (JCR1区,IF=7.168, ESI高被引论文)
[2]Jiang Hongkai*,Li Xingqiu, Shao Haidong. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network. Measurement Science and Technology, 2018, 29(6), 065107. (JCR2区,IF=1.585)
[3]Jiang Hongkai*, Lin Ying,Meng Zhiyong. Rolling element bearing fault feature extraction using an optimal chirplet. Measurement Science and Technolgy, 2018,29, 105004. (JCR2区,IF=1.585)
[4]Jiang Hongkai*,Shao Haidong,Chen Xinxia, Huang Jiayang. A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery. Journal of Intelligent & Fuzzy Systems, 2018, 34(6): 3513-3521. (JCR3区,IF=1.426)
[5] Shao Haidong,Jiang Hongkai*,Zhao Ke. A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings. Mechanical Systems and Signal Processing, 2018, 110: 193-209.(JCR1区,IF=4.116)
[6] Shao Haidong,Jiang Hongkai*,Li Xingqiu. Rolling bearing fault detection using continuous deep belief network with locally linear embedding. Computers in Industry, 2018, 96: 27-39. (JCR2区,IF=2.691)
[7] Shao Haidong,Jiang Hongkai*, Lin Ying, Li Xingqiu. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders. Mechanical Systems and Signal Processing, 2018, 102: 278-297. (JCR1区,IF=4.116, ESI高被引论文)
[8] Shao Haidong,Jiang Hongkai*, Zhang Haizhou, Duan Wenjing, Liang Tianchen, Wu Shuaipeng. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mechanical Systems and Signal Processing, 2018, 100: 743-765. (JCR1区,IF=4.116, ESI热点论文、ESI高被引论文)
[9] Shao Haidong,Jiang Hongkai*, Li Xingqiu, Wu Shuaipeng. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowledge-Based Systems, 2018, 140: 1-14. (JCR1区,IF=4.529)
2017
[1] Shao Haidong,Jiang Hongkai*, Wang Fuan, Zhao Huiwei. An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowledge-Based Systems, 2017, 119: 200-220. (JCR1区,IF=4.529, ESI高被引论文)
[2] Shao Haidong,Jiang Hongkai*, Zhao Huiwei, Wang Fuan. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mechanical Systems and Signal Processing, 2017, 95: 187-204. (JCR1区,IF=4.116, ESI高被引论文)
[3]Jiang Hongkai*, Wang Fuan, Shao Haidong, Zhang Haizhou. Rolling bearing fault identification using multilayer deep learning convolutional neural network.Journal of Vibroengineering, 2017, 19(1): 1392-8716. (JCR4区,IF=0.398)
[4] Shao Haidong,Jiang Hongkai*, Wang Fuan, Wang Yanan. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet. ISA Transactions, 2017, 69, 187-201. (JCR1区,IF=3.394,ESI高被引论文)
[5] Wang Fuan,Jiang Hongkai*, Shao Haidong, Duan Wenjing, Wu Shuaipeng. An adaptive deep convolutional neural network for rolling bearing fault diagnosis. Measurement Science and Technology, 2017, 28(9): 095005. (JCR2区,IF=1.585)
[6]Jiang Hongkai*, Shao Haidong, Chen Xinxia, Huang Jiayang. Aircraft fault diagnosis based on deep belief network. 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, 123-127.
2016
[1]Jiang Hongkai*, Cai Qiushi, Zhao Huiwei, Meng Zhiyong. Rolling bearing fault feature extraction under variable conditions using hybrid order tracking and EEMD.Journal of Vibroengineering, 2016, 18(7): 2186-2242. (JCR4区,IF=0.398)
[2] Shao Haidong,Jiang Hongkai*, Zhao Huiwei, Cai Qiushi. Aircraft electromechanical system fault diagnosis based on deep learning. The 29th International Congress on Conditon Monitoring and Diagnostic Engineering Management, 2016.
[3] Wang Yanan,Jiang Hongkai*, Zhao Huiwei, Meng Zhiyong. A deep model for aircraft engine fault diagnosis. The 29th International Congress on Conditon Monitoring and Diagnostic Engineering Management, 2016.
[4] Wang Fuan,Jiang Hongkai*,Meng Zhiyong, Cai Qiushi, Zhang Haizhou. Rotating machinery fault diagnosis based on deep convolutional neural network. The 29th International Congress on Conditon Monitoring and Diagnostic Engineering Management, 2016.
2015
[1] Shao haidong,jiang hongkai*, zhang xun, niu maogui. Rolling bearing fault diagnosis using an optimization deep belief network. Measurement Science and Technology, 2015, 26: 115002(17pp). (JCR2区,IF=1.585,ESI高被引论文,IOP Publishing 中国区高被引论文)
2014
[1]Jiang Hongkai*, WangHan, Zhou Yong. An optimal lifting multiwavelet for rotating machinery fault detection. Journal of Vibroengineering, 2014, 16(1): 303-311. (JCR4区,IF=0.398)
[2] Shao Haidong,Jiang Hongkai*. Research on semi-active suspension vibration control using magneto-rheological damper. Proceedings of the First Symposium on Aviation Maintenance and Management, 2014, 2: 441-447.
[3] Wang Han,Jiang Hongkai*, Guo Dong. Bearing Fault Diagnosis Based on EEMD and AR Spectrum Analysis. Proceedings of the First Symposium on Aviation Maintenance and Management, 2014, 1: 389-396.
[4] Zhang Xueli,Jiang Hongkai*. Rolling bearing Fault Diagnosis Based on 1.5-dimension spectrum. Proceedings of the First Symposium on Aviation Maintenance and Management, 2014, 2: 433-440.
[5] Niu Maogui,Jiang Hongkai*. Research on the Dynamic Model with Magnetorheological Damper. Proceedings of the First Symposium on Aviation Maintenance and Management, 2014, 1: 323-330.
2013
[1]Jiang Hongkai*, Li Chengliang, Li Huaxing. An improved EEMD with Multiwavelet Packet for Rotating Machinery Multi-fault Diagnosis. Mechanical Systems and Signal Processing, 2013, 36: 225-239. (JCR1区,IF=4.116, ESI高被引论文)
[2]Jiang Hongkai*, Xia Yong, Wang Xiaodong. Rolling bearing fault detection using an adaptive lifting multiwavelet packet with a dimension spectrum. Measurement Science and Technology, 2013, 24(12): 125002-125012. (JCR2区,IF=1.585)
[3]姜洪开*,何毅娜.基于改进粒子滤波的飞机起落架损伤识别研究.西北工业大学学报, 2013,31(3):397-400.
2012
[1]Jiang Hongkai*, Duan Chendong. An Adaptive Lifting Scheme and The Application in Rolling Bearing Fault Diagnosis. Journal of Vibroengineering, 2012, 14(2): 759-770. (JCR4区,IF=0.398)
[2]Jiang Hongkai*, He Yina, Yao Pei. Incipient Defect Identification in Rolling Bearings Using Adaptive Lifting Scheme Packet. Journal of Vibroengineering, 2012, 14(2): 771-782. (JCR4区,IF=0.398)
[3]JiangHongkai*, He Yina, Duan Chendong. Rolling Bearing Fault Diagnosis Using Improved Lifting Scheme. Advanced Materials Research, 2012, 518-523: 3780-3783.
[4]窦丹丹,姜洪开*.基于信息熵和SVM多分类的飞机液压系统故障诊断.西北工业大学学报, 2012,30(4): 529-534.
2011
[1]姜洪开*,窦丹丹.基于自适应第二代小波的超声回波信号特征识别.西北工业大学学报, 2011,29(1):93-96.
2010
[1] Wang Zhongsheng,Jiang Hongkai*. Robust incipient fault identification of aircraft engine rotor based on wavelet and fraction. Aerospace Science and Technology, 2010, 14(4): 221-224. (JCR2区,IF=2.057)
2009
[1]王仲生,姜洪开*,徐一艳.发动机转子系统早期故障智能诊断.航空学报, 2009,30(2):242-246.
2008
[1]姜洪开*,王仲生. 基于改进第二代小波算法的发电机碰摩故障特征提取.中国电机工程学报,2008,28(8): 127-131.
[2]姜洪开*,王仲生. 基于自适应提升小波包的故障微弱信号特征早期识别.西北工业大学学报,2008,26(1): 99-103.
2007
[1]姜洪开*,王仲生.第二代小波包构造及航空发动机损伤识别.北京航空航天大学学报.2007,33(7):777-780.
2006
[1]Jiang Hongkai*, He Zhengjia, Duan Chengdong, Chen Peng. Gearbox Fault Diagnosis Using Adaptive Redundant Lifting Scheme. Mechanical Systems and Signal Processing.2006, 20(8): 1992-2006. (JCR1区,IF=4.116)
2005
[1]姜洪开*,何正嘉,段晨东,陈雪峰.自适应冗余第2代小波设计及齿轮箱故障特征提取.西安交通大学学报.2005,7:715-718.
[2]姜洪开*,何正嘉,段晨东,陈雪峰.基于提升方法的小波构造及早期故障特征提取.西安交通大学学报.2005,5:494-498.
社会兼职 Social Appointments
1、中国振动工程学会故障诊断专业委员会常务理事
2、中国振动工程学会转子动力学专业员会常务理事
3、陕西省振动工程学会常务理事
4、国家自然科学基金委同行评议专家
5、国家科技专家库评审专家
6、深圳市科创委项目评审专家
7、《Mechanical Systems and Signal Processing》、《IEEE Transactions on Industry Electronics》、《IEEE Transactions on Reliability》、《IEEE Transactions on Industry Informatics》、《Knowledge-Based Systems》、 《ISA Transactions》、《Engineering Fracture Mechanics》、《Signal Processing》、《Control Engineering Practice》、《Neurocomputing》、《Journal of Sound and Vibration》、《Renewable Energy》、《Measurement Science and Technology》、《Measurement》等国际期刊审稿人
综合介绍 General Introduction
本团队研究工作属新兴交叉学科,团队学术科研理念“明德精学、笃行致强”,欢迎飞行器设计、控制工程、测控技术、机械工程、电气工程、动力工程、计算机科学、电子信息、工程力学等不同专业背景优秀学子报考。
邮箱:jianghk@nwpu.edu.cn
English Version
相关话题/西北工业大学 民航
西北工业大学民航学院导师教师师资介绍简介-刘道新
相册基本信息Thebasicinformation姓名:刘道新学院:民航学院学历:博士研究生毕业学位:工学博士职称:教授职务:学科:材料科学与工程工作经历WorkExperience1980-1984,兰州大学金属物理专业学士学位1986-1989,西北工业大学腐蚀与防护专业硕士学位1994-199 ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-马存宝
相册基本信息Thebasicinformation姓名:马存宝学院:民航学院学历:博士研究生毕业学位:博士职称:教授职务:学科:交通运输工程工作经历WorkExperience西北工业大学学士学位,1984西北工业大学硕士学位,1987西北工业大学博士学位,20111.1980.9.至1984.8. ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-刘贞报
相册基本信息Thebasicinformation姓名:刘贞报学院:民航学院学历:博士研究生毕业学位:工学博士职称:教授职务:学科:航空宇航科学工作经历WorkExperience1997-2001,西北工业大学学士学位2001-2004,西北工业大学硕士学位2005,东北师范大学-教育部留日预备学 ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-宋东
相册基本信息Thebasicinformation姓名:宋东学院:民航学院学历:硕士研究生毕业学位:工学硕士职称:教授职务:学科:信息与通信工程工作经历WorkExperience1979-1983,西北工业大学计算机专业学士学位1986-1989,西北工业大学飞行器导航控制系统专业硕士学位1989 ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-马宗耀
相册基本信息Thebasicinformation姓名:马宗耀学院:民航学院学历:大学本科毕业学位:学士职称:高级工程师职务:学科:EnglishVersion ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-吴向清
我的相册基本信息Thebasicinformation姓名:吴向清学院:民航学院学历:博士研究生毕业学位:博士职称:副教授职务:学科:材料科学与工程我的相册工作经历WorkExperience1987-1991,南昌航空大学金属腐蚀与防护专业学士学位1998-2002,西北工业大学材料学专业硕士学位 ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-田薇
相册基本信息Thebasicinformation姓名:田薇学院:民航学院学历:硕士研究生毕业学位:工学硕士职称:高级实验师职务:学科:EnglishVersion ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-张晓化
相册基本信息Thebasicinformation姓名:张晓化学院:民航学院学历:博士研究生毕业学位:工学博士职称:副教授职务:副院长学科:材料科学与工程工作经历WorkExperience1997-2001,西北工业大学飞行器设计与工程专业学士学位2001-2004,西北工业大学材料学专业硕士学位 ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-殷之平
相册基本信息Thebasicinformation姓名:殷之平学院:民航学院学历:博士研究生毕业学位:博士职称:副教授职务:学科:力学工作经历WorkExperience1996-2000,西北工业大学飞行器设计专业学士学位2000-2003,西北工业大学固体力学专业硕士学位2004-2010,西北 ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29西北工业大学民航学院导师教师师资介绍简介-张永杰
相册基本信息Thebasicinformation姓名:张永杰学院:民航学院学历:博士研究生毕业学位:博士职称:副教授职务:学科:航空宇航科学-飞行器设计邮箱:zyj19191@nwpu.edu.cn工作经历WorkExperience1999-2003,西北工业大学飞行器设计与工程专业学士学位20 ...西北工业大学师资导师 本站小编 Free考研考试 2021-06-29