删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西北工业大学数学与统计学院导师教师师资介绍简介-马啸

本站小编 Free考研考试/2021-06-29


相册


基本信息 The basic information
马啸

数学与统计学院


博士研究生毕业

博士


副教授










教育经历 Education Experience
2008.8-2013.7清华大学数学科学系获理学博士学位

2004.8-2008.6北京师范大学数学科学学院获理学学士学位
2001.8-2004.6山东省菏泽市第一中学



教育教学 Education And Teaching
数学系专业选修课《偏微分方程》、《偏微分方程数值解》、《大规模科学计算》
工科研究生公共课《数学物理方程》
数学系研究生专业课《反问题计算方法及应用》



科学研究 Scientific Research
研究兴趣:地震层析成像、反问题最优化方法与应用、波动方程及程函方程数值方法、深度学习在波动问题正反演中的应用。



学术成果 Academic Achievements
SCI论文列表
22.Zhang Q, Ma X, & Nie Y, 2021, An iterative fast sweeping method for eikonal equation in 2d anisotropic media on unstructured triangular meshes.Geophysics,86(3),U49–U61.https://doi.org/10.1190/geo2020-0187.1
21.He X, Yang D, Ma X, & Qiu C, 2020, A modified numerical-flux-based discontinuous galerkin method for 2d wave propagations in isotropic and anisotropic media.Geophysics,85(5), 1-89.
20. Ma X, Li Y, & Song J, 2019, A stable auxiliary differential equation perfectly matched layer condition combined with low-dispersive symplectic methods for solving second-order elastic wave equations. Geophysics, 84(4), T193-T206.
19. Ma X, Yang D, He X, Huang X, & Song J, 2019, Nonsplit complex-frequency-shifted perfectly matched layer combined with symplectic methods for solving second-order seismic wave equations—Part 2: Wavefield simulations. Geophysics, 84(3), T167-T179.
18. He X, Yang D, Ma X, & Lang C, 2019, Dispersion–dissipation analysis of the triangle-based discontinuous Galerkin method for scalar wave equation. Geophysical Journal International, 218(2), 1174-1198.
17. He X, Yang D, Ma X, & Zhou Y, 2019, Symplectic interior penalty discontinuous Galerkin method for solving the seismic scalar wave equation. Geophysics, 84(3), T133-T145.
16. Ma X, Yang D, Huang X, & Zhou Y, 2018, Nonsplit complex-frequency shifted perfectly matched layer combined with symplectic methods for solving second-order seismic wave equations—Part 1: Method. Geophysics, 83(6), T301-T311.
15. Ma J, Yang D, Tong P, & Ma X, 2018, TSOS and TSOS-FK hybrid methods for modelling the propagation of seismic waves. Geophysical Journal International, 214(3): 1665-1682.
14. Ma X, Yang D, He X, Li J, & Zheng Y, 2018, A new high-order scheme based on numerical dispersion analysis of the wave phase-velocity for semi-discrete wave equations. Geophysics, 83(3): T123-T138.
13. 张金波, 杨顶辉, 贺茜君, 马啸, 2018, 求解双相和黏弹性介质波传播方程的间断有限元方法及其波场模拟. 地球物理学报, 61(3): 926-937.
12. Ma X & Yang D, 2017, A phase-preserving and low-dispersive symplectic partitioned Runge-Kutta method for solving seismic wave equations. Geophysical Journal International, 209(3): 1534-1557.
11. Li J, Yang D, Wu H & Ma X, 2017, A low-dispersive method using the high-order stereo-modelling operator for solving 2-D wave equations. Geophysical Journal International, 210(3), 1938–1964.
10. Chen Y, Yang G, Ma X & Song G, 2016, A time-space domain stereo finite difference method for 3D scalar wave propagation. Computers & Geosciences, 96, 218-235.
9. Yang D, He X, Ma X, Zhou Y & Li J, 2016, An optimal nearly analytic discrete-weighted Runge-Kutta discontinuous Galerkin hybrid method for acoustic wavefield modeling. Geophysics, 81(5): T251-T263.
8. Zhou Y, Yang D, Ma X & Li J, 2015, An effective method to suppress numerical dispersion in 2D acoustic and elastic modelling using a high-order Padé approximation. Journal of Geophysics & Engineering, 12(1):114-129.
7. Ma X, Yang D & Song G, 2015, A Low-Dispersive Symplectic Partitioned Runge-Kutta Method for Solving Seismic-Wave Equations: II. Wavefield Simulations. Bulletin of the Seismological Society of America, 105(2A): 657-675.
6. Ma X, Yang D, Song G & Wang M, 2014, A Low-Dispersive Symplectic Partitioned Runge-Kutta Method for Solving Seismic-Wave Equations: I. Scheme and Theoretical Analysis. Bulletin of the Seismological Society of America, 104(5): 2206-2225.
5. Yang D, Wang M & Ma X, 2014, Symplectic stereomodelling method for solving elastic wave equations in porous media. Geophysical Journal International, 196(1): 560-579.
4. Zhang C Y, Ma X, Yang L & Song G, 2014, A symplectic partitioned Runge-Kutta method based on the eighth-order nearly analytic discrete operator with the high-order accuracy. Applied Geophysics, 2014, 11(1): 89-106.
3. Ma X, Yang D & Liu F, 2011, A nearly analytic symplectically partitioned Runge–Kutta method for 2-D seismic wave equations. Geophysical Journal International, 187(1): 480-496.
2. 马啸, 杨顶辉, 张锦华, 2010,求解声波方程的辛可分Runge-Kutta方法. 地球物理学报, 53(8): 1993-2003.
1. 宋国杰, 杨顶辉, 陈亚丽, 马啸, 2010, 基于WNAD方法的非一致网格算法及其弹性波场模拟. 地球物理学报, 53(8): 1985-1992.








English Version


相关话题/西北工业大学 数学