A new oil spill detection algorithm based on Dempster-Shafer evidence theory
Zhang, Tianlong1,4; Guo, Jie1,2,3; Xu, Chenqi1,4; Zhang, Xi5; Wang, Chuanyuan1,2,3; Li, Baoquan1,2,3
发表期刊JOURNAL OF OCEANOLOGY AND LIMNOLOGY
ISSN2096-5508
2021-09-16
页码14
关键词synthetic aperture radar (SAR) dataoil spill detectionsubjective BayesianFaster-region convolutional neural networks (RCNN)Dempster-Shafer evidence theory
DOI10.1007/s00343-021-0255-2
通讯作者Guo, Jie(jguo@yic.ac.cn)
英文摘要Features of oil spills and look-alikes in polarimetric synthetic aperture radar (SAR) images always play an important role in oil spill detection. Many oil spill detection algorithms have been implemented based on these features. Although environmental factors such as wind speed are important to distinguish oil spills and look-alikes, some oil spill detection algorithms do not consider the environmental factors. To distinguish oil spills and look-alikes more accurately based on environmental factors and image features, a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed. The process of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian model. The Faster-region convolutional neural networks (RCNN) model was used for oil spill detection based on the convolution features. The detection results of the two models were fused at decision level using Dempster-Shafer evidence theory. The establishment and test of the proposed algorithm were completed based on our oil spill and look-alike sample database that contains 1 798 image samples and environmental information records related to the image samples. The analysis and evaluation of the proposed algorithm shows a good ability to detect oil spills at a higher detection rate, with an identification rate greater than 75% and a false alarm rate lower than 19% from experiments. A total of 12 oil spill SAR images were collected for the validation and evaluation of the proposed algorithm. The evaluation result shows that the proposed algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%.
资助机构National Key R&D Program of China; National Natural Science Foundation of China; Major Program for the International Cooperation of the Chinese Academy of Sciences
收录类别SCI
语种英语
关键词[WOS]SAR; SATELLITE; RADARSAT; ENVISAT; SEA
研究领域[WOS]Marine & Freshwater Biology; Oceanography
WOS记录号WOS:000696496400003
引用统计
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/29762
专题中科院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
海岸带生物学与生物资源利用重点实验室_海岸带生物学与生物资源保护实验室
中科院海岸带环境过程与生态修复重点实验室
通讯作者Guo, Jie作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China
2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Shandong Key Lab Coastal Environm Proc, Yantai 264003, Peoples R China
3.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Minist Nat Resources MNR, Inst Oceanog FIO 1, Qingdao 266061, Peoples R China
推荐引用方式
GB/T 7714Zhang, Tianlong,Guo, Jie,Xu, Chenqi,et al. A new oil spill detection algorithm based on Dempster-Shafer evidence theory[J]. JOURNAL OF OCEANOLOGY AND LIMNOLOGY,2021:14.
APAZhang, Tianlong,Guo, Jie,Xu, Chenqi,Zhang, Xi,Wang, Chuanyuan,&Li, Baoquan.(2021).A new oil spill detection algorithm based on Dempster-Shafer evidence theory.JOURNAL OF OCEANOLOGY AND LIMNOLOGY,14.
MLAZhang, Tianlong,et al."A new oil spill detection algorithm based on Dempster-Shafer evidence theory".JOURNAL OF OCEANOLOGY AND LIMNOLOGY (2021):14.
PDF全文下载地址:
点我下载PDF
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
A new oil spill detection algorithm based on Dempster-Shafer evidence theory
本站小编 Free考研考试/2022-02-11
相关话题/海岸 过程 环境 生态 生物学
海岸带环境水体中典型有机污染物 检测技术研究进展
海岸带环境水体中典型有机污染物检测技术研究进展王非凡;梁荣宁发表期刊海岸科学2018-10-10卷号第5卷期号:第1期页码:1-7关键词海岸带环境水体有机污染物样品前处理分析检测方法研究领域环境分析化学研究作者部门中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所),山东省海岸带环境过程 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11水位变化对黄河三角洲湿地生态系统CO2交换影响的模拟研究
水位变化对黄河三角洲湿地生态系统CO2交换影响的模拟研究陈雅文学位类型硕士导师韩广轩2021-05-15学位授予单位中国科学院大学学位授予地点中国科学院烟台海岸带研究所学位名称工学硕士学位专业环境科学关键词盐沼湿地水位变化生态系统CO2交换DNDC模型情境模拟摘要盐沼湿地作为陆地与海洋之间的过渡带, ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11模拟氮输入对黄河三角洲盐沼湿地碳循环关键过程的影响
模拟氮输入对黄河三角洲盐沼湿地碳循环关键过程的影响李隽永学位类型博士导师韩广轩2021-05-15培养单位中国科学院烟台海岸带研究所学位授予单位中国科学院烟台海岸带研究所学位授予地点中国科学院烟台海岸带研究所学位名称工学博士学位专业环境科学关键词氮输入净生态系统CO2交换光合碳分配有机碳流失盐沼湿地 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11莱州湾微塑料污染特征及其对典型双壳贝类生态毒性效应研究
莱州湾微塑料污染特征及其对典型双壳贝类生态毒性效应研究学位论文学位类型博士导师赵建民;王清2021-05-15学位授予单位中国科学院烟台海岸带研究所学位授予地点中国科学院烟台海岸带研究所学位名称理学博士学位专业海洋生物学关键词微塑料双壳贝类毒理效应组学脂质代谢摘要微塑料在海洋环境中无处不在,且由于其 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11黄河三角洲互花米草入侵对大型底栖动物的生态影响
黄河三角洲互花米草入侵对大型底栖动物的生态影响其他题名EcologicaleffectsofSpartinaalterniflorainvasiononmacrobenthiccommunityintheYellowRiverDelta姜少玉学位类型硕士导师李宝泉2021-05-07培养单位中国科学 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11中国海岸带典型生态系统服务价值评估研究
中国海岸带典型生态系统服务价值评估研究其他题名EvaluationoftypicalecosystemservicevalueinChina’scoastalzone刘玉斌学位类型博士导师侯西勇2021-05-09培养单位中国科学院烟台海岸带研究所学位授予单位中国科学院大学学位授予地点中国科学院烟台 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11基于SD-FLUS模型的中国海岸带LUCC多情景模拟
基于SD-FLUS模型的中国海岸带LUCC多情景模拟其他题名Multi-scenariosimulationofLUCCinChina'scoastalzonebasedonSD-FLUSmodel宋百媛学位类型硕士导师侯西勇2021-05-09培养单位中国科学院烟台海岸带研究所学位授予单位中国科学 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11四个时期和模拟情景下2025年黄河三角洲的土地利用格局和生态系统服务价值评估
四个时期和模拟情景下2025年黄河三角洲的土地利用格局和生态系统服务价值评估刘玉斌;王晓利;侯西勇;宋百媛;李晓炜;王超发表期刊湿地科学ISSN1672-59482020卷号18期号:4页码:424-436关键词YellowRiverDeltalandusescenarioanalysisecosy ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征
元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征杨开业1;巩合德1;李敬2;刘运通2;沙丽清2;宋清海2;金艳强2;杨大新2;李培广3;闻国静2;陈爱国2;庞志强2;张一平2发表期刊浙江农林大学学报ISSN2095-07562020卷号37期号:5页码:849-859关键词soilrespiratio ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11烟台近海浮游动物优势种空间生态位研究
烟台近海浮游动物优势种空间生态位研究侯朝伟;孙西艳;刘永亮;张晨;张文静;赵建民;董志军发表期刊生态学报ISSN1000-09332020卷号40期号:16页码:5822-5833关键词dominantzooplanktonspeciesspatialnichesnichebreadthnicheo ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11