Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens
Yu, Shixiang1,2; Li, Xin1,2; Lu, Weilai2,3; Li, Hanfei2,3; Fu, Yu Vincent2,3; Liu, Fanghua1,4
发表期刊ANALYTICAL CHEMISTRY
ISSN0003-2700
2021-08-17
卷号93期号:32页码:11089-11098
DOI10.1021/acs.analchem.1c00431
通讯作者Fu, Yu Vincent(fuyu@im.ac.cn); Liu, Fanghua(fhliu@yic.ac.cn)
英文摘要The need for efficient and accurate identification of pathogens in seafood and the environment has become increasingly urgent, given the current global pandemic. Traditional methods are not only time consuming but also lead to sample wastage. Here, we have proposed two new methods that involve Raman spectroscopy combined with a long short-term memory (LSTM) neural network and compared them with a method using a normal convolutional neural network (CNN). We used eight strains isolated from the marine organism Urechis unicinctus, including four kinds of pathogens. After the models were configured and trained, the LSTM methods that we proposed achieved average isolation-level accuracies exceeding 94%, not only meeting the requirement for identification but also indicating that the proposed methods were faster and more accurate than the normal CNN models. Finally, through a computational approach, we designed a loss function to explore the mechanism reflected by the Raman data, finding the Raman segments that most likely exhibited the characteristics of nucleic acids. These novel experimental results provide insights for developing additional deep learning methods to accurately analyze complex Raman data.
资助机构National Key Research and Development Program of China; National Natural Science Foundation of China; Guangdong Foundation for Program of Sci ence and Technology Research; GDAS' Project of Science and Technology Development; Pearl River Talent Recruitment Program of Guangdong Province; Chinese Academy of Sciences; Senior User Project of RV KEXUE
收录类别SCI
语种英语
关键词[WOS]CONVOLUTIONAL NEURAL-NETWORKS; MICROSCOPY IMAGES; SPECTROSCOPY; CARCINOMA; BACTERIA
研究领域[WOS]Chemistry
WOS记录号WOS:000687058400005
引用统计被引频次:1[WOS][WOS记录][WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/29701
专题中科院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
海岸带生物学与生物资源利用重点实验室_海岸带生物学与生物资源保护实验室
通讯作者Fu, Yu Vincent; Liu, Fanghua作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Biol & Biol Resources Utilizat, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Microbiol, State Key Lab Microbial Resources, Beijing 100101, Peoples R China
4.Guangdong Acad Sci, Natl Reg Joint Engn Res Ctr Soil Pollut Control &, Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Integrated Agroenvironm Pollut, Guangzhou 510650, Peoples R China
推荐引用方式
GB/T 7714Yu, Shixiang,Li, Xin,Lu, Weilai,et al. Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens[J]. ANALYTICAL CHEMISTRY,2021,93(32):11089-11098.
APAYu, Shixiang,Li, Xin,Lu, Weilai,Li, Hanfei,Fu, Yu Vincent,&Liu, Fanghua.(2021).Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens.ANALYTICAL CHEMISTRY,93(32),11089-11098.
MLAYu, Shixiang,et al."Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens".ANALYTICAL CHEMISTRY 93.32(2021):11089-11098.
PDF全文下载地址:
点我下载PDF
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens
本站小编 Free考研考试/2022-02-11
相关话题/海岸 生物学 环境 文献 英文
海岸带环境水体中典型有机污染物 检测技术研究进展
海岸带环境水体中典型有机污染物检测技术研究进展王非凡;梁荣宁发表期刊海岸科学2018-10-10卷号第5卷期号:第1期页码:1-7关键词海岸带环境水体有机污染物样品前处理分析检测方法研究领域环境分析化学研究作者部门中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所),山东省海岸带环境过程 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11中国海岸带典型生态系统服务价值评估研究
中国海岸带典型生态系统服务价值评估研究其他题名EvaluationoftypicalecosystemservicevalueinChina’scoastalzone刘玉斌学位类型博士导师侯西勇2021-05-09培养单位中国科学院烟台海岸带研究所学位授予单位中国科学院大学学位授予地点中国科学院烟台 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11基于SD-FLUS模型的中国海岸带LUCC多情景模拟
基于SD-FLUS模型的中国海岸带LUCC多情景模拟其他题名Multi-scenariosimulationofLUCCinChina'scoastalzonebasedonSD-FLUSmodel宋百媛学位类型硕士导师侯西勇2021-05-09培养单位中国科学院烟台海岸带研究所学位授予单位中国科学 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11环境中人为来源的铂族元素及其迁移转化硏究进展
环境中人为来源的铂族元素及其迁移转化硏究进展其他题名Migrationandtransformationofanthropogenicplatinumgroupelementsinenvironment:Areview李培苗;高学鲁发表期刊应用生态学报ISSN1001-93322012卷号23期号: ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11钙、铜和铅离子选择性微电极电位检测体系的构建及在环境分析中的应用
钙、铜和铅离子选择性微电极电位检测体系的构建及在环境分析中的应用赵光涛学位类型博士导师秦伟2019-05-20培养单位中国科学院烟台海岸带研究所学位授予单位中国科学院研究生院学位授予地点北京关键词离子选择性微电极,单细胞分析,电位分析,孔隙水,重金属摘要微电极具有几何尺寸小、传质速率快、iR降低、响 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11海藻及其生物基材料对典型环境内分泌干扰物的去除作用与影响机制研究
海藻及其生物基材料对典型环境内分泌干扰物的去除作用与影响机制研究张翠学位类型博士导师吕剑2019-05-15学位授予单位中国科学院大学学位授予地点中国科学院烟台海岸带研究所学位名称工学博士学位专业环境工程关键词海藻环境内分泌干扰物生物地球化学行为海藻凋萎物藻基材料摘要环境内分泌干扰物(EDCs)是我 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11功能微针电极的构建及在海岸带水体典型金属元素检测中的应用研究
功能微针电极的构建及在海岸带水体典型金属元素检测中的应用研究韩海涛学位类型博士导师潘大为2020-05-13学位授予单位中国科学院大学学位授予地点中国科学院烟台海岸带研究所学位名称工学博士学位专业环境科学关键词微针电极电化学检测海岸带水体金属元素形态分析摘要海岸带是海洋与陆地相互作用的地带,是具有陆 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11曹妃甸围填海工程对近海环境的影响综述
曹妃甸围填海工程对近海环境的影响综述其他题名AreviewoftheimpactsoftheCaofeidianreclamationprojectontheoffshoreenvironment李东;侯西勇;张华发表期刊海洋科学ISSN1000-30962019-02-15卷号43期号:02页码: ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11黄河三角洲—莱州湾海岸带土地利用变化特征及多情景分析
黄河三角洲—莱州湾海岸带土地利用变化特征及多情景分析其他题名Land-usechangecharacteristicsandscenarioanalysisintheYellowRiverDeltaandLaizhouBaycoastalzone宋百媛;侯西勇;刘玉斌发表期刊海洋科学ISSN1000 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11环境友好型比率荧光微流控纸芯片快速检测苯醚甲环唑
环境友好型比率荧光微流控纸芯片快速检测苯醚甲环唑其他题名Environmentallyfriendlyratiometricfluorescentmicrofluidicpaperchipforrapiddetectionofdifenoconazole马昕;郝帼英;张忠;李金花;杨兴斌;陈令新发表 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11