删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

The engineered biphenyl dioxygenases enhanced the metabolism of dibenzofuran

本站小编 Free考研考试/2022-02-11

The engineered biphenyl dioxygenases enhanced the metabolism of dibenzofuran
Wang, Yuan1,2,3; Sun, Chengcheng2,3,5; Min, Jun2,3,4; Li, Bingjun1; Li, Junde2,3,5; Chen, Weiwei2,3,5; Kong, Yachao2,3,5; Hu, Xiaoke2,3,4
发表期刊INTERNATIONAL BIODETERIORATION & BIODEGRADATION
ISSN0964-8305
2021-07-01
卷号161页码:9
关键词DibenzofuranBurkholderia xenovorans LB400Biphenyl dioxygenaseEnzyme engineeringRegiospecificityBiocatalysts
DOI10.1016/j.ibiod.2021.105228
通讯作者Hu, Xiaoke(xkhu@yic.ac.cn)
英文摘要As a model compound of dioxin, dibenzofuran is a persistent environmental pollutant. Several investigations have provided evidence that biphenyl dioxygenase (BPDO) from Burkholderia xenovorans LB400 could be engineered to further enhance the metabolite profile of biphenyl and polychlorinated biphenyl through lateral oxygenation. In this context, we examined the ability of the evolved BphAES283M, BphAEp4-S283M and BphAERR41S283M to transform dibenzofuran with features of co-planar and ortho-substituted biphenyls. For BphAES283M, BphAEp4-S283M and BphAERR41-S283M, the kcat/Km value toward dibenzofuran was 4.5 times, 3 times and 2.5 times higher than that of the wild-type enzyme, respectively. Meanwhile, biochemical experiments determined that the substitution Ser283Met affected the regiospecificity of product formation, and the primary metabolite produced by BphAES283M was identified as 3,4-dihydro-3,4-dihydroxy-dibenzofuran. The structural analysis revealed residue Met283 as critical to generate a flexible catalytic cavity and a productive orientation of dibenzofuran during the catalytic reaction. Collectively, this study provides the theoretical basis and technical support for the significant development of better promising biocatalysts to effectively degrade dibenzofuran and other aromatic pollutants in the environment.
资助机构National Natural Science Foundation of China; Key Research Project of Frontier Science of Chinese Academy of Sciences; External Cooperation Program of Chinese Academy of Sciences; Youth Innovation Promotion Association Program of the Chinese Academy of Sciences
收录类别SCI
语种英语
关键词[WOS]ACTIVE-SITE; NAPHTHALENE DIOXYGENASE; BACTERIAL-DEGRADATION; CATABOLIC PATHWAY; P-DIOXIN; STRAIN; B-356; AMINO; BURKHOLDERIA-XENOVORANS-LB400; DIBENZOTHIOPHENE
研究领域[WOS]Biotechnology & Applied Microbiology; Environmental Sciences & Ecology
WOS记录号WOS:000656677300004
引用统计
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/29380
专题海岸带生物学与生物资源利用重点实验室_海岸带生物学与生物资源保护实验室

通讯作者Hu, Xiaoke作者单位1.Yantai Univ, Ocean Sch, Yantai 264005, Peoples R China
2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Biol & Bioresource Utilizat, Chunhui Rd, Yantai 264003, Peoples R China
3.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao, Peoples R China
4.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao, Peoples R China
5.Univ Chinese Acad Sci, Beijing, Peoples R China

推荐引用方式
GB/T 7714Wang, Yuan,Sun, Chengcheng,Min, Jun,et al. The engineered biphenyl dioxygenases enhanced the metabolism of dibenzofuran[J]. INTERNATIONAL BIODETERIORATION & BIODEGRADATION,2021,161:9.
APAWang, Yuan.,Sun, Chengcheng.,Min, Jun.,Li, Bingjun.,Li, Junde.,...&Hu, Xiaoke.(2021).The engineered biphenyl dioxygenases enhanced the metabolism of dibenzofuran.INTERNATIONAL BIODETERIORATION & BIODEGRADATION,161,9.
MLAWang, Yuan,et al."The engineered biphenyl dioxygenases enhanced the metabolism of dibenzofuran".INTERNATIONAL BIODETERIORATION & BIODEGRADATION 161(2021):9.


PDF全文下载地址:

点我下载PDF
相关话题/生物学 海岸 英文 推荐 英语