A coarse-to-fine leaf detection approach based on leaf skeleton identification and joint segmentation
Zhang, Liankuan1; Xia, Chunlei2,3; Xiao, Deqin1; Weckler, Paul4; Lan, Yubin5; Lee, Jang M.3
发表期刊BIOSYSTEMS ENGINEERING
ISSN1537-5110
2021-06-01
卷号206页码:94-108
关键词Leaf extractionLeaf pose measurementLeaf shape estimationOcclusion detectionActive shape modelPlant image analysis
DOI10.1016/j.biosystemseng.2021.03.017
通讯作者Xia, Chunlei(clxia@yic.ac.cn); Lee, Jang M.(jmlee@pusan.ac.kr)
英文摘要Plant leaf detection and segmentation are challenging tasks for in-situ plant image analysis. Here, a novel leaf detection scheme is proposed to detect individual leaves and accurately determine leaf shapes in natural scenes. A leaf skeleton-extraction method was developed by analysing local image features of skeleton pixels. Approximate positions of individual leaves were determined according to the main leaf skeleton. Sub-images containing only single target leaves were extracted from whole plant images according to position and size of the main skeleton. Accurate leaf analysis was conducted on the sub-images of individual leaves. Leaf direction was calculated by examining the structure of the main leaf skeleton. Joint segmentation by combining region and active shape model was presented to accurately elucidate leaf shape. Leaf detection was implemented using deep learning approach, Faster R-CNN. A plant leaf image dataset containing four types of leaf images of different complexity was built to evaluate detection algorithms. Plant leaves with occlusions and complex backgrounds were effectively detected and their shapes accurately determined. Detection accuracy of the proposed method was 81.10%-100%, and 86.75%-100% for Faster R-CNN. The method demonstrated a comparable detection ability to that of Faster R-CNN. Furthermore, the rates of success to determine leaf direction by our method ranged between 89.06% and 100%, while the average measurement difference was 1.29 degrees compared with manual measurement. The accuracy of shape measurement was 75.95%-100% for all types of plant images. Therefore, this method is accurate and stable for precise leaf measurements in agricultural applications. (C) 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.
资助机构Key Area Research and Development Program of Guangdong Province; CAS Key Technology Talent Program; Key Research and Development Program of Yantai; China Scholarship Council (CSC); BK21PLUS, Creative Human Resource Development Program for IT Convergence
收录类别SCI
语种英语
关键词[WOS]ACTIVE SHAPE MODELS; CLASSIFICATION; IMAGE
研究领域[WOS]Agriculture
WOS记录号WOS:000651462400008
引用统计
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/29325
专题中科院海岸带环境过程与生态修复重点实验室_海岸带环境工程技术研究与发展中心
中科院海岸带环境过程与生态修复重点实验室
通讯作者Xia, Chunlei; Lee, Jang M.作者单位1.South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
3.Pusan Natl Univ, Dept Elect Engn, Busan 46241, South Korea
4.Oklahoma State Univ, Dept Biosyst & Agr Engn, Stillwater, OK 74078 USA
5.South China Agr Univ, Coll Engn, Guangzhou 510642, Peoples R China
推荐引用方式
GB/T 7714Zhang, Liankuan,Xia, Chunlei,Xiao, Deqin,et al. A coarse-to-fine leaf detection approach based on leaf skeleton identification and joint segmentation[J]. BIOSYSTEMS ENGINEERING,2021,206:94-108.
APAZhang, Liankuan,Xia, Chunlei,Xiao, Deqin,Weckler, Paul,Lan, Yubin,&Lee, Jang M..(2021).A coarse-to-fine leaf detection approach based on leaf skeleton identification and joint segmentation.BIOSYSTEMS ENGINEERING,206,94-108.
MLAZhang, Liankuan,et al."A coarse-to-fine leaf detection approach based on leaf skeleton identification and joint segmentation".BIOSYSTEMS ENGINEERING 206(2021):94-108.
PDF全文下载地址:
点我下载PDF
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
A coarse-to-fine leaf detection approach based on leaf skeleton identification and joint segmentatio
本站小编 Free考研考试/2022-02-11
相关话题/海岸 生态 过程 环境 文献
中国海岸带典型生态系统服务价值评估研究
中国海岸带典型生态系统服务价值评估研究其他题名EvaluationoftypicalecosystemservicevalueinChina’scoastalzone刘玉斌学位类型博士导师侯西勇2021-05-09培养单位中国科学院烟台海岸带研究所学位授予单位中国科学院大学学位授予地点中国科学院烟台 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11基于SD-FLUS模型的中国海岸带LUCC多情景模拟
基于SD-FLUS模型的中国海岸带LUCC多情景模拟其他题名Multi-scenariosimulationofLUCCinChina'scoastalzonebasedonSD-FLUSmodel宋百媛学位类型硕士导师侯西勇2021-05-09培养单位中国科学院烟台海岸带研究所学位授予单位中国科学 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11四个时期和模拟情景下2025年黄河三角洲的土地利用格局和生态系统服务价值评估
四个时期和模拟情景下2025年黄河三角洲的土地利用格局和生态系统服务价值评估刘玉斌;王晓利;侯西勇;宋百媛;李晓炜;王超发表期刊湿地科学ISSN1672-59482020卷号18期号:4页码:424-436关键词YellowRiverDeltalandusescenarioanalysisecosy ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征
元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征杨开业1;巩合德1;李敬2;刘运通2;沙丽清2;宋清海2;金艳强2;杨大新2;李培广3;闻国静2;陈爱国2;庞志强2;张一平2发表期刊浙江农林大学学报ISSN2095-07562020卷号37期号:5页码:849-859关键词soilrespiratio ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11烟台近海浮游动物优势种空间生态位研究
烟台近海浮游动物优势种空间生态位研究侯朝伟;孙西艳;刘永亮;张晨;张文静;赵建民;董志军发表期刊生态学报ISSN1000-09332020卷号40期号:16页码:5822-5833关键词dominantzooplanktonspeciesspatialnichesnichebreadthnicheo ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11九龙江口海门岛红树林湿地大型底栖动物群落生态研究
九龙江口海门岛红树林湿地大型底栖动物群落生态研究其他题名CommunityecologyofmacrobenthosinthemangrovewetlandofHaimenIsland,JiulongjiangEstuary周细平1;徐帅良1;吴培芳1;李艺蝉1;沈露1;吴兆东1;刘爽1;刘东艳2; ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11烟台市城镇化过程中的“迁村并点”问题探讨及其社会经济影响分析
烟台市城镇化过程中的“迁村并点”问题探讨及其社会经济影响分析其他题名AResearchtoVillageCombinationandtheAnalysisoftheInfluencesofWhichHavingonSocialEconomyduringtheUrbanizationProcessof ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11环境中人为来源的铂族元素及其迁移转化硏究进展
环境中人为来源的铂族元素及其迁移转化硏究进展其他题名Migrationandtransformationofanthropogenicplatinumgroupelementsinenvironment:Areview李培苗;高学鲁发表期刊应用生态学报ISSN1001-93322012卷号23期号: ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11钙、铜和铅离子选择性微电极电位检测体系的构建及在环境分析中的应用
钙、铜和铅离子选择性微电极电位检测体系的构建及在环境分析中的应用赵光涛学位类型博士导师秦伟2019-05-20培养单位中国科学院烟台海岸带研究所学位授予单位中国科学院研究生院学位授予地点北京关键词离子选择性微电极,单细胞分析,电位分析,孔隙水,重金属摘要微电极具有几何尺寸小、传质速率快、iR降低、响 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11功能微针电极的构建及在海岸带水体典型金属元素检测中的应用研究
功能微针电极的构建及在海岸带水体典型金属元素检测中的应用研究韩海涛学位类型博士导师潘大为2020-05-13学位授予单位中国科学院大学学位授予地点中国科学院烟台海岸带研究所学位名称工学博士学位专业环境科学关键词微针电极电化学检测海岸带水体金属元素形态分析摘要海岸带是海洋与陆地相互作用的地带,是具有陆 ...烟台海岸带研究所 本站小编 Free考研考试 2022-02-11