删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Highly efficient flow-through catalytic reduction of methylene blue using silver nanoparticles funct

本站小编 Free考研考试/2022-02-11

Highly efficient flow-through catalytic reduction of methylene blue using silver nanoparticles functionalized cotton
Qi, Longbin; Zhang, Keming; Qin, Wei; Hu, Yunxia
发表期刊CHEMICAL ENGINEERING JOURNAL
ISSN1385-8947
2020-05-15
卷号388页码:124252
关键词IN-SITU SYNTHESISGOLD NANOPARTICLESORGANIC-DYESMEMBRANESFILTRATIONPOLYDOPAMINEDEGRADATIONIMMOBILIZATIONDISSOLUTIONREMOVAL
研究领域Engineering, Environmental; Engineering, Chemical
DOI10.1016/j.cej.2020.124252
产权排序[Qi, Longbin; Qin, Wei] Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Shandong Key Lab Coastal Environm Proc,YIC, Yantai 264003, Shandong, Peoples R China; [Hu, Yunxia] Tianjin Polytech Univ, Sch Mat Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China; [Zhang, Keming] Tianjin Polytech Univ, Sch Environm Sci & Engn, Tianjin 300387, Peoples R China; [Qi, Longbin] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
通讯作者Hu, Yunxia(yunxiahu@tjpu.edu.cn)
作者部门海岸带环境过程实验室
英文摘要Organic dye pollution has become a serious problem threating environment and human health. Noble metal nanoparticles based catalytic degradation of organic dyes has attracted intensive attentions due to their outstanding catalytic activities. Compared with the catalytic systems using free noble metal nanoparticles, the flow-through systems based on the immobilized noble metal nanoparticles are more suitable for both high efficiency reaction and recycling of nanoparticles. In this study, the fibrous natural material cotton is selected as the support of silver nanoparticles (Ag NPs) and used for flow-through catalytic reduction of methylene blue (MB). Ag NPs were one-step immobilized onto cotton by immersing the cotton into a mixture solution of silver nitrate, poly (ethylene glycol) methyl ether thiol and dopamine. The reaction rate constant K of Ag NPs functionalized cotton towards MB reached high up to 0.478 min(-1). The flow-through system with Ag NPs functionalized cotton was operated to achieve a super high permeation flux of 2000 L m(-2) h(-1) and also a very high MB reduction of more than 99%, which is far better than the reported results (below 500 L m(-2) h(-1)). Moreover, the Ag NPs on cotton were very stable and released very slowly. After 24 h flowing-through test, only 0.9% of silver lose from the cotton. Our work provides a facile and applicable way to prepare the low-cost catalysts with high performances for continuous and efficient dye-containing waste water treatment.
文章类型Article
资助机构National Natural Science Foundation of ChinaNational Natural Science Foundation of China [21476249, 51708408]; Chang-jiang Scholars and Innovative Research Team in the University of Ministry of Education, China [IRT-17R80]; Program for Innovative Research Team in University of Tianjin [TD13-5044]; Science and Technology Plans of Tianjin [18JCZDJC37100]
收录类别SCI
语种英语
关键词[WOS]IN-SITU SYNTHESIS; GOLD NANOPARTICLES; ORGANIC-DYES; MEMBRANES; FILTRATION; POLYDOPAMINE; DEGRADATION; IMMOBILIZATION; DISSOLUTION; REMOVAL
研究领域[WOS]Engineering
WOS记录号WOS:000533524900004
引用统计被引频次:25[WOS][WOS记录][WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/25031
专题中科院海岸带环境过程与生态修复重点实验室_海岸带环境过程实验室
中科院海岸带环境过程与生态修复重点实验室_海岸带环境工程技术研究与发展中心
中科院海岸带环境过程与生态修复重点实验室

作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Shandong Key Lab Coastal Environm Proc,YIC, Yantai 264003, Shandong, Peoples R China;
2.Tianjin Polytech Univ, Sch Mat Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China;
3.Tianjin Polytech Univ, Sch Environm Sci & Engn, Tianjin 300387, Peoples R China;
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China

推荐引用方式
GB/T 7714Qi, Longbin,Zhang, Keming,Qin, Wei,et al. Highly efficient flow-through catalytic reduction of methylene blue using silver nanoparticles functionalized cotton[J]. CHEMICAL ENGINEERING JOURNAL,2020,388:124252.
APAQi, Longbin,Zhang, Keming,Qin, Wei,&Hu, Yunxia.(2020).Highly efficient flow-through catalytic reduction of methylene blue using silver nanoparticles functionalized cotton.CHEMICAL ENGINEERING JOURNAL,388,124252.
MLAQi, Longbin,et al."Highly efficient flow-through catalytic reduction of methylene blue using silver nanoparticles functionalized cotton".CHEMICAL ENGINEERING JOURNAL 388(2020):124252.


PDF全文下载地址:

点我下载PDF
相关话题/海岸 过程 环境 生态 实验室