删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pest

本站小编 Free考研考试/2022-02-11

Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D
Zhang, Z; Ma, X; Jia, MF; Li, BW; Rong, JH; Yang, XB
发表期刊ANALYST
ISSN0003-2654
2019-02-21
卷号144期号:4页码:1282-1291
关键词MOLECULARLY IMPRINTED POLYMERSSHELL-SELECTIVE RECOGNITION2,4-DICHLOROPHENOXYACETIC ACIDLIQUID-CHROMATOGRAPHYSURFACESILICADEVICEIMMUNOASSAYMEMBRANESEXPOSURE
研究领域Chemistry, Analytical
DOI10.1039/c8an02051e
产权排序[Zhang, Zhong; Ma, Xin; Jia, Mengfan; Yang, Xingbin] Shaanxi Normal Univ, Shaanxi Engn Lab Food Green Proc & Safety Control, Coll Food Engn & Nutr Sci, Xian 710119, Shaanxi, Peoples R China; [Zhang, Zhong; Ma, Xin; Jia, Mengfan; Yang, Xingbin] Shaanxi Normal Univ, Shaanxi Key Lab Hazard Factors Assessment Proc &, Coll Food Engn & Nutr Sci, Xian 710119, Shaanxi, Peoples R China; [Zhang, Zhong; Rong, Jianhui] Univ Hong Kong, Sch Chinese Med, Li Ka Shing Fac Med, Pokfulam, 10 Sassoon Rd, Hong Kong, Peoples R China; [Li, Bowei] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China
作者部门海岸带环境工程技术研究与发展中心
英文摘要Rapid detection of pesticides in fruits is an ongoing challenge. The objective of the present study was to develop novel fluorescent microfluidic paper chips for specific recognition and sensitive detection of the pesticide 2,4-D through the electron-transfer-induced fluorescence quenching mechanism. CdTe quantum dots (QDs) were deposited onto cellulose paper (base material) to yield imprinted paper chips (paper@QDs@MIPs). This method allows the transferability of the molecularly imprinted fluorescence sensor from the liquid phase to the solid phase (paper base) for rapid and portable analysis. The resultant imprinted paper chips were effectively characterized, and they exhibited ideal ordered spatial network structure, chemical stability, and fluorescence property. The paper@QDs@MIPs showed that 2,4-D binding significantly reduced the fluorescence intensity within less than 18 min, and it achieved satisfactory linearity in the range of 0.83-100 M and high detectability of 90 nM. The recognition specificity for 2,4-D relative to its analogues was shown, and the imprinting factor was 2.13. In addition, the recoveries of the spiked bean sprouts at three concentration levels ranged within 94.2-107.0%, with a relative standard deviation of less than 5.9%. Collectively, the device provided an effective platform for rapid recognition, convenience, and detection of trace food pollutants in complex matrices, thereby ensuring food safety and further promoting surface imprinting studies.
文章类型Article
资助机构National Natural Science Foundation of ChinaNational Natural Science Foundation of China [31701705, 31671823]; Hong Kong Scholars Program [XJ2017060]; Key Laboratory of Coastal Environmental Process and Ecological Restoration [2018KFJJ01]; Open Project Program of State Key Laboratory of Food Science and Technology, Nanchang University [SKLF-KF-201813]; Fundamental Research Fund of the Central University in China [GK201803084]
收录类别SCI
语种英语
关键词[WOS]MOLECULARLY IMPRINTED POLYMERS; SHELL-SELECTIVE RECOGNITION; 2,4-DICHLOROPHENOXYACETIC ACID; LIQUID-CHROMATOGRAPHY; SURFACE; SILICA; DEVICE; IMMUNOASSAY; MEMBRANES; EXPOSURE
研究领域[WOS]Chemistry, Analytical
WOS记录号WOS:000459637300022
引用统计被引频次:30[WOS][WOS记录][WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/24995
专题中科院海岸带环境过程与生态修复重点实验室_海岸带环境工程技术研究与发展中心

作者单位1.Shaanxi Normal Univ, Shaanxi Engn Lab Food Green Proc & Safety Control, Coll Food Engn & Nutr Sci, Xian 710119, Shaanxi, Peoples R China;
2.Shaanxi Normal Univ, Shaanxi Key Lab Hazard Factors Assessment Proc &, Coll Food Engn & Nutr Sci, Xian 710119, Shaanxi, Peoples R China;
3.Univ Hong Kong, Sch Chinese Med, Li Ka Shing Fac Med, Pokfulam, 10 Sassoon Rd, Hong Kong, Peoples R China;
4.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China

推荐引用方式
GB/T 7714Zhang, Z,Ma, X,Jia, MF,et al. Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D[J]. ANALYST,2019,144(4):1282-1291.
APAZhang, Z,Ma, X,Jia, MF,Li, BW,Rong, JH,&Yang, XB.(2019).Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D.ANALYST,144(4),1282-1291.
MLAZhang, Z,et al."Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D".ANALYST 144.4(2019):1282-1291.


PDF全文下载地址:

点我下载PDF
相关话题/海岸 环境工程 英语 环境 统计