删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中国石油大学华东理学院导师教师师资介绍简介-王健英文简介
本站小编 Free考研考试/2020-11-25
Address: College of Sciences,
China University of Petroleum,
66 Changjiang West Rd., Huangdao District,
Qingdao Shandong, 266580, China
Email: wangjiannl@upc.edu.cn
Telephone: 86- (O)
Mobile phone: 86-** (M)
Education
02/2017-03/2017 Visiting Proessor, Electronics and Communication Sciences Unit (ECSU), Indian Statistical Institute,
Calcutta, India.
Supervisor: Prof. Nikhil R. Pal
07/2013-01/2014 Postdoc, Electrical and Computer Engineering, University of Louisville, Louisville, Kentucky, USA
Supervisor: Prof. Jacek M. Zurada
10/2011-01/2012 Visiting Ph.D., Computational Mathematics, Xi'an Jiaotong University, China
Supervisor: Prof. Zongben Xu
09/2010-09/2011 Joint Ph.D., Electrical and Computer Engineering, University of Louisville, Louisville, Kentucky, USA
Supervisor: Prof. Jacek M. Zurada
09/2006-07/2012 Ph.D., Computational Mathematics, Dalian University of Technology, Dalian, China
Supervisor: Prof. Wei Wu
09/1998-06/2002 B.S., Computational Mathematics, China University of Petroleum, Dongying, China
Appointment
12/2012-present Associate Professor, School of Sciences, China University of Petroleum, China
07/2012-12/2012 Lecturer, School of Sciences, China University of Petroleum, China
09/2002-07/2006 Lecturer, School of Sciences, China University of Petroleum, China
Research Interests
Machine Learning, Computational Mathematics, Neural Networks, Optmization
Presentations at Conferences
2017
The Fourteenth International Symposium on Neural Networks (ISNN 2017), Jun 21 - Jun 23,
Sapporo, Japan
The 24rd International Conference on Neural Information Processing (ICONIP 2017), Nov 14 - Nov 18,
Guangzhou, China.
2016
The 24th International Conference on Neural Information Processing (ICONIP), Oct. 16-21, Kyoto,
Japan
2015
The International Conference on Extreme Learning Machines (ELM2015), Dec. 15-17, Hangzhou,
China
2014
International Conference on Artificial Intelligence and Soft Computing (ICAISC), May 30-Jun. 5,
Zakopane, Poland
2012
International Symposium on Neural Networks (ISNN), Jul 18-21, Shenyang, China
2011
International Joint Conference on Neural Networks (IJCNN), Jul 31-Aug 5, San Jose, California, USA
2009
The 11th anniversary conference of Chinese Universities, Jul 20-23, Guiyang Normal University, Guiyang, China
Grants
The Study of Fault Tolerant Learning Algorithm for Feedforward Neural Networks and Its Deterministic Convergence (**, 250,000 RMB), supported by National Natural Science foundation of China, 01/2014-12/2016.
Convergence Analysis of Feedforward Neural Networks based on L1/2 regularization (2012M520624, 50,000RMB), supported byChinaPostdoctoralScienceFoundation, 10/2012-10/2014.
Theoretical Analysis and Algorithm Design of Neural Networks based on L1/2 regularization method (ZR2013FQ004, 50,000RMB), supported by Natural Science Foundation of Shandong Province, 01/2013-12/2015.
Fault Tolerant Neural Networks and its Convergence Analysis (20**4, 50,000RMB), supported by Specialized Research Fund for the Doctoral Program of Higher Education of China, 01/2014-12/2016.
The Applications of L1/2 Regularization Neural Networks and its Theoretical Analysis (13CX02009A, 40,000RMB), supported by the Fundamental Research Funds for the Central Universities, 01/2013-12/2014.
The Model Design and Its Theoretical Analysis of Extreme Learning Machine for Deepwater Drilling Risk (15CX05053A, 100,000RMB), supported by the Fundamental Research Funds for the Central Universities, 09/2015-09/2018.
The Study and Practice of English Teaching for Information and Computing Science (150,000RMB), supported by the ProjectsofInternationalCooperationandExchanges UPC, 01/2016-01/2019.
Journals Associate with:
2018.01-- IEEE Transactions on Neural Networks and Learning Systems
2014.03-- Journal of Applied Computer Science Methods
Referee papers for professional journals:
IEEE Transactions on Neural Networks and Learning Systems; Neural Networks; International Journal of Applied Mathematics and Computer Science; Neural Computing and Applications; Neurocomputing; Discrete Dynamics in Nature and Society
Publications and Manuscripts:
Peer-reviewed journal publications
[1]Jian Wang, Jie Yang, Wei Wu. Convergence of cyclic and almost-cyclic learning with momentum for feedforward neural networks, IEEE Transactions on Neural Networks, 22(8), pp.1297-1306, 2011. (SCI 一区)
[2]Wei Wu, Jian Wang, Mingsong Cheng, Zhengxue Li. Convergence analysis of online gradient method for BP neural networks, Neural Networks, 24(1), pp. 91-98, 2011. (SCI 二区)
[3]Jian Wang, Wei Wu, Jacek M. Zurada. Deterministic convergence of conjugate gradient method for feedforward neural networks, Neurocomputing, 74(14-15), pp. 2368-2376, 2011. (SCI 二区)
[4]Jian Wang, Wei Wu, Zhengxue Li, Long Li. Convergence of gradient method for double parallel feedforward neural network, International Journal of Numerical Analysis and Modeling, 8(3), pp. 484-495, 2011. (SCI 三区)
[5]Jian Wang, Wei Wu, Jacek M. Zurada. Boundedness and convergence of MPN for cyclic and almost cyclic learning with penalty, International Joint Conference on Neural Networks (IJCNN), Jul 31-Aug 5, 2011, pp. 125-132, San Jose, California, USA, 2011. (EI)
[6]Jian Wang, Wei Wu, Jacek M. Zurada. Computational properties and convergence analysis of BPNN for cyclic and almost cyclic learning with penalty. Neural Networks, 33, pp. 127-135, 2012. (SCI 二区)
[7]Jian Wang, Wei Wu, Jacek M. Zurada. Computational Properties of Cyclic and Almost-Cyclic learning with momentum for feedforward neural networks, International Symposium on Neural Networks (ISNN), Jul 18-21, 2012, Shenyang, Liaoning, China, 2012. (EI)
[8] 王健,中美线性代数教学方法的对比与分析,吉林工程技术师范学院学报,28(2), pp. 74-75. 2012.
Jian Wang, The Linear Algebra Teaching Methods Comparison and Analysis between China and America. Journal of Jilin Teachers Institute of Engineering and Technology, 28(2), pp. 74-75, 2012
[9]Jan Chorowski, Jian Wang, Jacek M. Zurada. Review and performance comparison of SVM- and ELM-based classifiers, Neurocomputing, 128, pp. 507-516, 2014. (SCI 二区)
[10] Wei Wu, Qinwei Fan, Jacek M. Zurada, Jian Wang, Dakun Yang, Yan Liu. Batch gradient method with smoothingL1/2regularization for training of feedforward neural networks, Neural Networks, 50, pp. 72-78, 2014. (SCI 二区)
[11] Yan Liu, Wei Wu, Qinwei Fan, Dakun Yang, Jian Wang. A modified gradient learning algorithm with smoothingL1/2regularization for Takagi–Sugeno fuzzy models, Neurocomputing, 138, pp. 229-237, 2014. (SCI 二区)
[12] Jian Wang, Jacek M. Zurada, Yanjiang Wang, Jing Wang, Guofang Xie. Boundedness of Weight Elimination for BP Neural Networks, The 13th International Conference on Artificial Intelligence and Soft Computing (ICAISC), June 1-5, 8467, pp. 155-165, 2014, Zakopane, Poland. (EI)
[13] Yetian Fan, Wei Wu, Wenyu Yang, Qin-wei Fan, Jian Wang. A pruning algorithm with L 1/2 regularizer for extreme learning machine. Journal of Zhejiang University - Science C 15(2): 119-125 (2014)
[14] Hongmei Shao, Jian Wang, Lijun Liu, Dongpo Xu, Wendi Bao. Relaxed conditions for convergence of batch BPAP for feedforward neural networks. Neurocomputing, 153, pp. 174-179, 2015. (SCI 二区)
[15] Bingjia Huang, Jian Wang, Yanqing Wen, Hongmei Shao, Jing Wang. Convergence analysis of inverse iterative algorithms for neural networks with L1/2 penalty. Journal of China University of Petroleum, Vol. 39, No. 2, pp. 164-170, 2015. (EI)
[16] Jian Wang, Guoling Yang, Shan Liu, Jacek M. Zurada, Convergence Analysis of Multilayer Feedforward Networks Trained with Penalty Terms, Journal of Applied Computer Science Methods, Vol. 7, No. 2, pp. 89-103, 2015.
[17] 王健, 谢国芳, 刘珊, 邵红梅, 黄炳家. 研究性教学在教学中的案例分析.东南大学学报:哲学社会科学版, Vol. 17, pp.170-171, 2015.
[18] Xian Shi, Jian Wang*, Gang Liu, Liu Yang, Xinmin Ge, Shu Jiang.Application of extreme learning machine and neural networks in total organic carbon content prediction in organic shale with wire line logs, Journal of Natural Gas Science and Engineering, Vol. 33, pp. 687-702, 2016. (通讯作者) (SCI 三区)
[19] Xiaoling Gong, Jian Wang*, Yanjiang Wang, and Jacek M. Zurada. A Conjugate Gradient-based Efficient Algorithm for Training Single-hidden-layer Neural Networks, The 23rd International Conference on Neural Information Processing (ICONIP), Vol. 9950, pp. 470-478, 2016. (EI)
[20] Jian Wang, Zhenyun Ye, Weifeng Gao, Jacek M. Zurada. Boundedness and Convergence Analysis of Weight Elimination for Cyclic Training of Neural Networks,Neural Networks, Vol. 82, pp. 49-61, 2016. (SCI 二区)
[21] Xian Shi, Gang Liu, Yuanfang Cheng, Liu Yang, Hailong Jiang, Lei Chen, Shu Jiang, Jian Wang*. Brittleness index prediction in shale gas reservoirs based on efficient network models, Journal of Natural Gas Science and Engineering, Vol. 35, pp. 673-685, 2016. (通讯作者)(SCI 三区)
[22] Xian Shi,Gang Liu, Xiaoling Gong, Jialin Zhang, Jian Wang, and Hongning Zhang. An Efficient Approach for Real-Time Prediction of Rate of Penetration in Offshore Drilling, Mathematical Problems in Engineering, Vol. 3, pp. 1-13, 2016. (SCI 四区)
[23] 王健.中外教师合作教学模式对师生的能力影响研究, 黑龙江教育学院学报, Vol. 35, No. 8, pp. 37-39, 2016.
[24] Jian Wang,Qingling Cai,Qingquan Chang,Jacek M. Zuradad.Convergence Analyses on Sparse Feedforward Neural Networks via Group Lasso Regularization, Information Sciences, Vol. 381, pp. 250-269, 2017.(SCI 二区)
[25] Xian Shi, Jian Wang*, Xinmin Ge,Zhongying Han,Guanzheng Qu,Shu Jiang. Anewmethodforrockbrittlenessevaluationintightoilformationfromconventionallogsandpetrophysicaldata, Journal of Petroleum Science and Engineering,151:168-182, 2017. (通讯作者) (SCI 三区)
[26] Jian Wang, Yanqing Wen, Yida Gou, Zhenyun Yeb, Hua Chen. Fractional-ordergradient descent learningofBPneuralnetworkswithCaputoderivative, Neural Networks, 89: 19–30, 2017. (SCI 二区)
[27] Guoling Yang, Bingjie Zhang, Zhaoyang Sang, Jian Wang*, and Hua Chen. A Caputo-type Fractional-order gradient descent learning of BP neural networks, The 14th International Symposium on Neural Networks, ISNN 2017. Lecture Notes in Computer Science, vol 10261, pp. 547-554, 2017 (通讯作者)(EI)
[28] Jian Wang, Guoling Yang, Bingjie Zhang, Zhanquan Sun, Yusong Liu, Jichao Wang. Convergence analysis of Caputo-type fractional order complex-valued neural networks, IEEE Access, 5: 14560-14571, 2017. (SCI 四区)
[29] Jian Wang, Yanqing Wen, Zhenyun Ye, Ling Jian and Hua Chen. Convergence analysis of BP neural networks via sparse response regularization, Applied Soft Computing, 61: 354-363, 2017. (SCI 二区)
[30] Bingjie Zhang, Tao Gao, Long Li, Zhanquan Sun, and Jian Wang*. An Improved Conjugate Gradient Neural Networks Based on a Generalized Armijo Search Method, The 24th International Conference on Neural Information Processing (ICONIP 2017), Vol. 10637, pp. 131-139, 2017.(EI 通讯作者)
[31]Qin Liu, Zhaoyang Sang, Hua Chen, Jian Wang, Huaqing Zhang*. An Efficient Algorithm for Complex-Valued Neural Networks Through Training Input Weights, The 24th International Conference on Neural Information Processing (ICONIP 2017), Vol. 10637, pp. 150-159, 2017. (EI)
[32]Hongmin Gao, Yichen Yang, Bingyin Zhang, Long Li, Huaqing Zhang, and Shujun Wu*. Feature Selection Using Smooth Gradient L1/2 Regularization, The 24th International Conference on Neural Information Processing (ICONIP 2017), Vol. 10637, pp. 160-170, 2017.
[33] Jian Wang, Qingquan Chang, Qin Chang, Yusong Liu and Nikhil R. Pal. Weight noise injection-based MLPs with group lasso penalty: Asymptotic Convergence and application to node pruning, Submitted to IEEE Transactions on Cybernetics, 2017.
[34] Jian Wang, Bingjie Zhang, Zhanquan Sun, Wenxue Hao, Qingying Sun. A novel conjugate gradient method with generalized Armijo search for efficient training of feedforward neural networks, Neurocomputing, 275:308-316,2018. doi.org/10.1016/j.neucom.2017.08.037(SCI 二区)
[35] Jian Wang, Chen Xu, Xifeng Yang, and Jacek M. Zurada, A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks based on Group Lasso Method, In Press, IEEE Transactions on Neural Networks and learning Systems, 2018.doi.org/10.1109/TNNLS.2017.**(SCI 一区)
相关话题/中国石油大学 理学院
中国石油大学华东理学院导师教师师资介绍简介-孙建国
孙建国,中国石油大学理学院,副教授出生年月:1981.12.13研究方向:代数拓扑,微分拓扑,微分几何奇点理论主讲课程:本科生《高等数学》E-mail:sunjg616@163.com教育经历2010/09–2013/12,东北师范大学,基础数学,博士,导师:裴东河2004/09–2006/07,东 ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25中国石油大学(华东)2021年接收推荐免试研究生名单
http://zs.gs.upc.edu.cn/_upload/article/files/bf/7b/f5ecd17e48eb8a1d6f6a4daf9792/f3900596-57a4-437b-a781-f461f794071e.pdf ...中国石油大学华东招生简章 本站小编 Free考研考试 2020-11-25中国石油大学华东理学院导师教师师资介绍简介-李锋杰
一、基本信息李锋杰、女、理学博士、副教授、硕士生导师、美国《数学评论》评论员、MathSciNet评论员、教育部学位中心学位论文通讯评议专家联系方式:邮箱fjli@upc.edu.cnfjlbcl@126.comQQ:教育经历:1)1995年-1999年,烟台师范学院数学系,数学教育,本科/理学学士 ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25中国石油大学华东理学院导师教师师资介绍简介-刘珊
刘珊,副教授,工学博士,主要从事油藏数值模拟及非常规油气藏开发,主讲《高等数学》《数学物理方程》《计算方法》等课程。发表EI科研论文10余篇。主持及参与国家级省部级科研项目共计5项。2016年获得校青年教师讲课比赛第一名,2017年获得山东省青年教师讲课比赛一等奖,2019年获得全国数学类微课比赛全 ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25中国石油大学华东理学院导师教师师资介绍简介-王际朝
王际朝,男,1979年8月,理学博士,副教授,硕士生导师。Email:wangjc@upc.edu.cn研究方向1.海洋(海浪)数值模式;2.数据同化、数据融合;3.机器学习算法、应用统计分析;4.非线性分析、非线性偏微方程;受教育经历2010/09-2014/06,中科院海洋研究所,物理海洋专业, ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25中国石油大学华东理学院导师教师师资介绍简介-郭会
个人简介郭会。女,1979年7月生。籍贯山东省济阳县。理学博士,教授,硕士生导师,计算数学系主任。研究方向主要从事偏微分方程数值解及油藏数值模拟的研究。针对具有实际物理背景的积分微分方程、神经传导方程、油藏数值模拟中多孔介质流进行分裂最小二乘算法研究,将耦合的方程组系统分裂成两个独立的子系统,进而极 ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25中国石油大学华东理学院导师教师师资介绍简介-乔田田
乔田田,女,副教授,汉族,中共党员。哈尔滨工业大学,理学博士。 ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25中国石油大学华东理学院导师教师师资介绍简介-周生田
个人简介周生田,男,1965年生,博士,教授,硕士生导师,1986年毕业于聊城大学(原聊城师范学院)数学专业,获学士学位,1988年毕业于广西大学基础数学专业,获硕士学位,1997年毕业于石油大学油气田开发工程专业,获博士学位。目前主要从事数学在油气田开发中的应用、多相流动、计算流体力学等方面的研究 ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25中国石油大学华东理学院导师教师师资介绍简介-宋允全副教授介绍
★宋允全,1980年10月生,博士,副教授,硕士生导师,中国青年统计学家协会常务理事、中国现场统计生存分析分会副秘书长、中国现场统计高维数据分会理事、青岛市统计专家咨询委员会委员。★联系方式:电子邮箱:syqfly1980@upc.edu.cnQQ号:通讯地址:青岛经济技术开发区长江西路66号邮政编 ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25中国石油大学华东理学院导师教师师资介绍简介-刘军
刘军。男,1982年10月生。籍贯山东省菏泽市。理学博士,副教授。Email:upcliujun@163.com受教育经历2007/03-2012/06,西安交通大学,应用数学专业,博士2009/12-2010/12,多伦多大学,计算机系,联合培养博士生2004/09-2006/12,西安交通大学, ...中国石油大学华东师资导师 本站小编 Free考研考试 2020-11-25