删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

山东大学数学与统计学院导师教师师资介绍简介-孙华清

本站小编 Free考研考试/2020-11-22


孙华清
孙华清
理学博士,教授,博士生导师
研究领域:微分算子谱理论、差分方程、动力系统、哈密顿系统

联系方式
手机:**E-mail:sunhuaqing_2@163.com sunhuaqing@email.sdu.edu.cn
学术经历
2016-至今,山东大学威海数学与统计学院,教授;2013-2016, 山东大学金融学院,博士后;2010-2016, 山东大学威海数学与统计学院,副教授;2007-2010, 山东大学威海数学与统计学院,讲师;
行政职务与学术兼职
曾任数学与应用数学系主任以及院长助理美国数学评论评论员多个SCI杂志审稿人
访问经历
2012.12-2013.03,访问美国Northern Illinois University2012.01, 南开大学,陈省身研究所访问
学习经历
2004-2007, 山东大学数学学院 博士学位;2001-2004, 山东大学数学学院 理学硕士;
工作经历
2016-至今, 山东大学(威海), 数学与统计学院, 教授2013-2016,山东大学,数学学院,博士后2011-2016, 山东大学(威海), 数学与统计学院, 副教授2007-2010, 山东大学(威海), 数学与统计学院, 讲师
项目
1.《奇异Hamilton系统的谱及其相关研究》,国家自然科学基金面上项目,2020-2023,主持2.《奇异线性Hamilton系统谱的研究及其应用》,山东省自然科学基金面上项目,2019-2022,主持3. 《奇异J-对称哈密顿系统谱问题研究》,国家自然科学基金面上项目,2015-2018,主持4.《非对称线性差分系统谱理论研究》,国家自然科学基金青年项目,2012-2014,主持5.《奇异J-对称微分算子的谱问题》,中国博士后基金面上项目,2014-2016,主持6.《非自伴线性哈密顿系统谱性质的研究》,山东省自然科学基金青年项目,2011-2013,主持7.《奇异哈密顿算子谱分布研究》,山东省博士后创新基金,2013-2015,主持8.《低松弛预应力钢绞线松弛试验数据线性回归模型》,威海市科技局,主持9.《奇异微分算子谱定性分析的相关研究》,山东大学自主创新项目,主持10.《关于分数阶微分方程谱问题的研究》,国家自然科学基金青年项目,2017-2019,第二位11.《可压流体力学方程组弱(强)解的适定性及其大时间行为》,山东省自然科学基金面上项目,2015-2017,第二位
获奖
2016年度山东大学(威海)优秀教师;
论著
[24] Sun Huaqing, Qi Jiangang, Stability of essential spectra of singular Sturm-Liouville differential operators under perturbations small at infinity, Mathematical Methods in the Applied Sciences 41 (2018) 2031-2038.[23] Xie Bing, Sun Huaqing, Guo Xinwei, Non-real eigenvalues of symmetric Sturm-Liouville problems with indefinite weight functions, Electronic Journal of Qualitaive Theory of Differential Equations 2 (2017) 1-14.[22] Qi Jiang, Sun Huaqing, Relatively bounded and relatively compact perturbations for limit circle Hamiltonian systems, Integr. Equ. Oper. Theory 86 (2016), 359–375.[21] Sun Huaqing, Kong Qingkai, Shi Yuming, Essential spectrum of singular discrete linear Hamiltonian systems, Math. Nachr. 289, (2016), No. 2–3, 343–359.[20] Sun Huaqing, Shi Yuming, On essential spectra of singular linear Hamiltonian systems, Linear Algebra Appl. 469 (2015), 204-229.[19] Sun Huaqing, Shi Yuming, Jian Wenwen, J-self-adjoint extensions of a class of Hamiltonian differential systems, Linear Algebra Appl. 462, (2014), 204-232.[18] Jian Wenwen, Sun Huaqing, On bounds of eigenvalues of complex Sturm-Liouville boundary value problems, Abstr. Appl. Anal. 2014, Art. ID 362340, 4 pp.[17] Sun Huaqing, Shi Yuming, Spectral properties of singular discrete linear Hamiltonian systems, J. Difference Equ. Appl. 20 (2014), no. 3, 379–405. [16] Sun Huaqing, Simplicity and spectrum of singular Hamiltonian systems of arbitrary order, Abstr. Appl. Anal. 2013, Art. ID 202851, 6 pp.[15] Ren Guojing, Sun Huaqing, J-self-adjoint extensions for a class of discrete linear Hamiltonian systems, Abstr. Appl. Anal. 2013, Art. ID 904976, 19 pp.[14] Sun Huaqing, Ren Guojing, J-self-adjoint extensions for second-order linear difference equations with complex coefficients, Adv. Difference Equ. 2013, 2013:3, 26 pp. [13] Sun Huaqing, Qi Jiangang, Criteria of the three cases for non-self-adjoint singular Sturm-Liouville difference equations, J. Difference Equ. Appl. 18 (2012), no. 12, 2069–2087.[12] Sun Huaqing, Qi Jiangang, The theory for J-Hermitian subspaces in a product space, ISRN Math. Anal. 2012, Art. ID 676835, 16 pp.[11] Qi Jiangang, Zheng Zhaowen, Sun Huaqing, Classification of Sturm-Liouville differential equations with complex coefficients and operator realizations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2131, 1835–1850.[10] Sun Huaqing, Qi Jiangang, Jing Haibin, Classification of non-self-adjoint singular Sturm-Liouville difference equations, Appl. Math. Comput. 217 (2011), no. 20, 8020–8030.[9] Sun Huaqing, Shi Yuming, Self-adjoint extensions for singular linear Hamiltonian systems, Math. Nachr. 284 (2011), no. 5-6, 797–814.[8] Shi Yuming, Sun Huaqing,Self-adjoint extensions for second-order symmetric linear difference equations, Linear Algebra Appl. 434 (2011), no. 4, 903–930.[7] Sun Huaqing, Qi Jiangang, On classification of second-order differential equations with complex coefficients, J. Math. Anal. Appl. 372 (2010), no. 2, 585–597.[6] Sun Huaqing, Shi Yuming, Self-adjoint extensions for linear Hamiltonian systems with two singular endpoints, J. Funct. Anal. 259 (2010), no. 8, 2003–2027.[5] Sun Huaqing, Limit point criteria for singular linear discrete Hamiltonian systems, (Chinese) J. Shandong Univ. Nat. Sci. 45 (2010), no. 3, 76–79.[4] Sun Huaqing, On the limit-point case of singular linear Hamiltonian systems, Appl. Anal. 89 (2010), no. 5, 663–675.[3] Sun Huaqing, Shi Yuming, Strong limit point criteria for a class of singular discrete linear Hamiltonian systems, J. Math. Anal. Appl. 336 (2007), no. 1, 224–242.[2] Sun Huaqing, Shi Yuming, Limit-point and limit-circle criteria for singular second-order linear difference equations with complex coefficients, Comput. Math. Appl. 52 (2006), no. 3-4, 539–554.[1] Sun Huaqing, Shi Yuming, Eigenvalues of second-order difference equations with coupled boundary conditions, Linear Algebra Appl. 414 (2006), no. 1, 361–372.
已毕业研究生(以入学时间为序)
已毕业硕士:菅雯雯;杨晨;黄坤
在读研究生(以入学时间为序)
博士:杨晨;朱丽硕士:张薇;张硕

相关话题/山东大学 数学