删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

山东大学数学与统计学院导师教师师资介绍简介-孙海伟

本站小编 Free考研考试/2020-11-22


孙海伟
孙海伟
理学博士,副教授,硕士生导师
研究领域:自守L-函数、自守形式、堆垒素数论

联系方式
山东省威海市文化西路180号 山东大学(威海)数学与统计学院邮编:264209E-mail:hwsun@sdu.edu.cn
访问经历
2017.10-2018.10,美国爱荷华大学,访问****
学习经历
2005.09-2010.06,山东大学数学学院,理学博士2001.09-2005.06,山东大学数学学院 ,理学学士
工作经历
2016.09-至今,山东大学(威海)数学与统计学院,副教授2010.07-2016.09,山东大学(威海)数学与统计学院,讲师
项目
1. 自守L-函数亚凸界估计的研究,国家自然科学青年基金,2017.01-2019.12,主持2. 若干自守L-函数解析性质的研究,中国博士后科学基金面上项目,2017.01-2019.12,主持3. 代数数域中的华林-哥德巴赫问题,山东大学基本科研基金,2014.01-2015.12,主持4. 若干Waring-Goldbach问题的研究,教育部博士点新教师类科研基金,2013.01-2015.12,主持
论著
[14] JianYa Liu, Haiwei Sun and Yangbo Ye, Double square moments and subconvexity bounds for Rankin-Selberg L-functions of holomorphic cusp forms, Sci. China Math. 63 (2020): 823-844.[13] Haiwei Sun and Yangbo Ye, Further improvement on bounds for L-functions related to GL(3), Int. J. Number Theory?15 (7)?(2019), 1487–1517.[12] Haiwei Sun and Yangbo Ye, Double first moment for L(1/2,Sym^2f x g) applying Petersson's formula twice, J. Number Theory?202?(2019),?141–159.[11] Mark Mckee, Haiwei Sun and Yangbo Ye, Improved subconvexity bounds for GL(2)*GL(3) and GL(3) L-functions by weighted stationary phase, Trans. Amer. Math. Soc., 370(5) (2018), 3745-3769.[10] Mark Mckee, Haiwei Sun and Yangbo Ye, Weighted stationary phase of higher orders, Frontiers of Mathematics in China (3) 12 (2017), 675-702.[9] Guanghua Ji and Haiwei Sun, Moments of L-functions attached to the twist of modular form by Dirichlet character, Chin. Ann. Math. (2) 35 B (2015), 237-252.[8] Zhixin Liu and Haiwei Sun, Diophantine approximation with one prime and three squares of primes, The Ramanujan Journal (3 ) 30 (2013), 327-340.[7] Zhixin Liu and Haiwei Sun, Diopantine approximation with four squares of primes and powers of 2, Chin. Ann. Math., Series A, (5) 34 A (2013), 599-608.[6] Guangshi Lv and Haiwei Sun, The ternary Goldbach–Vinogradov theorem with almost equal primes from the Beatty sequence, The Ramanujan Journal (2) 30 (2013), 153-161.[5] Haiwei Sun, The vales of additive forms at prime arguments, Studia Sci. Math. Hungarica. (4) 48 (2011), 421–444.[4] Guangshi Lv and Haiwei Sun, Prime in quadratic progressions on average, Acta Math. Sin. (Engl. Ser.) (6) 27 (2011) , 1187–1194.[3] Haiwei Sun and Guangshi Lv, On fractional power moments of L-functions associated with certain cusp forms, Acta Appl Math , 109 (2010), 653–667.[2] Guangshi Lv and Haiwei Sun, On a generalization of Hua's theorem with five squares of primes, Acta Math. Hungar. (3) 122 (2009), 273–282.[1] Guangshi Lv and Haiwei Sun, Integers represented as the sum of one prime, two squares of primes and powers of 2. Proc. Amer. Math. Soc. (4) 137 (2009), 185–1191.

相关话题/山东大学 数学