删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
山东大学软件学院导师教师师资介绍简介-余国先
本站小编 Free考研考试/2020-11-22
余国先
教授,博士生导师,齐鲁青年****
Email:gxyu@sdu.edu.cn; guoxian85@gmail.com
个人简介
山东大学教授,博士生导师,齐鲁青年****。2013年毕业于华南理工大学计算机应用技术专业,获工学博士学位,2013年-2020年在西南大学计算机与信息科学学院工作,2014-2015年香港浸会大学计算机科学系博士后,2011年至2013年美国乔治梅森大学计算机科学系公派联合培养博士生,重庆市学术技术带头人后备人选(2018)。
中国计算机学会会员(人工智能与模式识别专委会委员、生物信息学专委会委员、大数据专委会通讯委员),中国人工智能学会会员(机器学习专委会委员,生物信息学与人工生命专委会委员),IEEE/ACM会员,中国生物工程学会会员。担任KDD, NeurIPS, IJCAI, AAAI, ICDM, SDM, WSDM, ECAI和BIBM等国际国内重要会议程序委员会委员(Senior/Program Committee, Area Chair),和TPAMI, TNNLS, TKDE, TCBB, Information Fusion, Pattern Recognition, Genome Biology, Bioinforamtics, BiB,自动化学报,计算机学报,中国科学-信息科学等多个国内外著名期刊审稿人。
主要从事机器学习,数据挖掘及其在生物医学数据分析中的应用研究,获得重庆市科技奖励(自然科学)三等奖(2019)(余国先,郭茂祖,王峻等)。在国内外主流会议和期刊(KDD, AAAI, IJCAI, TKDE, TNNLS, TCYB, Bioinformatics, BiB, TCBB,中国科学-信息科学,计算机学报等)发表论文100余篇。主持(完成)国家自然科学基金3项,重庆市自然科学基金2项。
讲授《机器学习》、《数据库系统原理》、《Matlab程序设计》等课程。
教育经历
2007年-2013年,华南理工大学,计算机应用技术,工学博士
2003年-2007年,西安理工大学,软件工程,工学学士
主持科研项目
2019-2022,面向可变剪接异构体功能预测的数据整合方法研究 国家自然科学基金(**)
2018-2018,基于多层次数据集成的跨物种蛋白质功能预测研究,国家自然科学基金(**)
2015-2017,面向蛋白质功能预测的多标记学习方法研究与应用,国家自然科学基金(**)
2018-2020,面向跨物种蛋白质功能预测的多源异构数据表示与集成模型研究,重庆市基础与前沿研究项目
2014-2017,多标记学习方法在蛋白质功能预测中的研究与应用,重庆市基础与前沿研究项目
2014-2016,高维数据上的半监督学习研究与应用,人力资源与社会保障部留学人员科技活动项目择优资助
主要论文(+指导的学生,*通讯作者)
[1]. Xianxue Yu+,Guoxian Yu*, Jun Wang, Carlotta Domeniconi. Co-clustering Ensembles based on Multiple Relevance Measures,IEEE Transactions on Knowledge and Data Engineering(CCF Rank A), 2020.
[2]. Guoxian Yu,Xia Chen+, Carlotta Domeniconi, Jun Wang*, Zhao Li, Zili Zhang, Xiangliang Zhang. CMAL: Cost-effective Multi-label Active Learning by Querying Subexamples,IEEE Transactions on Knowledge and Data Engineering(CCF Rank A), 2020.
[3]. Guoxian Yu, Jinzheng Tu+, Jun Wang*, Carlotta Domeniconi, Xiangliang Zhang. Active Multi-Label Crowd Consensus,IEEE Transactions on Neural Networks and Learning Systems(CCF Rank B), 2020.
[4]. Jun Wang, Xing Wang+,Guoxian Yu*, Carlotta Domeniconi, Zhiwen Yu, Zili Zhang. Discovering Multiple Co-Clusterings with Matrix Factorization,IEEE Transactions on Cybernetics(CCF Rank B), 2020.
[5]. Qiaoyu Tan+,Guoxian Yu*, Jun Wang, Carlotta Domeniconi, Xiangliang Zhang. Individuality and Commonality based Multi-View Multi-Label Learning,IEEE Transactions on Cybernetics(CCF Rank B), 2020.
[6]. Xuanwu Liu+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Guoqiang Xiao, Maozu Guo. Weakly-supervised Cross-modal Hashing,IEEE Transactions on Big Data(CCF Rank C), 2020.
[7]. Jun Wang, Ziying Yang+, Carlotta Domeniconi, Xiangliang Zhang,Guoxian Yu*. Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs, and pathways,Briefings in Bioinformatics(CCF Rank B), 2020.
[8]. Guoxian Yu, Yuehui Wang+, Jun Wang*, Carlotta Domeniconi, Maozu Guo, Xiangliang Zhang. Attributed Heterogeneous Network Fusion via Collaborative Matrix Tri-factorization,Information Fusion(CCF Rank B), 2020, 63: 153-165.
[9]. Keyao Wang+, Jun Wang, Carlotta Domeniconi, Xiangliang Zhang, Guoxian Yu*. Differentiating isoform functions with collaborative matrix factorization,Bioinformatics(CCF Rank B), 2020, 36(6): 1864–1871.
[10].Guoxian Yu, Keyao Wang+, Carlotta Domeniconi, Maozu Guo*, Jun Wang*. Isoform function prediction based on bi-random walks on a heterogeneous network,Bioinformatics(CCF Rank B), 2020, 36(1): 303-310.
[11].Guoxian Yu*, Yuan Jiang, Jun Wang, Hao Zhang, Haiwei Luo*. BMC3C: Binning Metagenomic Contigs using Codon usage, sequence Composition and read Coverage,Bioinformatics(CCF Rank B), 2018, 34(24): 4171-4179.
[12].Guangyuan Fu+, Jun Wang, Carlotta Domeniconi,Guoxian Yu*. Matrix factorization based data fusion for the prediction of lncRNA-disease associations,Bioinformatics(CCF Rank B), 2018, 34(9): 1529-1537.
[13].Guangyuan Fu+, Jun Wang, Bo Yang,Guoxian Yu*. NegGOA: Negative GO Annotations Selection using Ontology Structure,Bioinformatics(CCF Rank B), 2016, 32(19): 2996-3004.
[14].Yingwen Zhao+, Jun Wang, Maozu Guo, Xiangliang Zhang,Guoxian Yu*. Cross-Species Protein Function Prediction with Asynchronous-Random Walk,IEEE/ACM Transactions on Computational Biology and Bioinformatics(CCF Rank B), 2020.
[15].Guoxian Yu, Keyao Wang+, Guangyuan Fu, Maozu Guo, Jun Wang*. NMFGO: Gene function prediction via nonnegative matrix factorization with Gene Ontology,IEEE/ACM Transactions on Computational Biology and Bioinformatics(CCF Rank B), 2020, 36(1): 303-310.
[16].Guoxian Yu*, Guangyuan Fu+, Jun Wang, Yingwen Zhao. NewGOA: predicting new GO annotations of proteins by bi-random walks on a hybrid graph,IEEE/ACM Transactions on Computational Biology and Bioinformatics(CCF Rank B), 2018, 15(4): 1390-1402.
[17].Guoxian Yu*, Guangyuan Fu+, Jun Wang, Hailong Zhu. Predicting Protein Function via Semantic Integration of Multiple Networks,IEEE/ACM Transactions on Computational Biology and Bioinformatics(CCF Rank B), 2016, 13(2): 220-232.
[18].Guoxian Yu*, Huzefa Rangwala, Carlotta Domeniconi, Guoji Zhang, Zili Zhang. Predicting Protein Function using Multiple Kernels,IEEE/ACM Transactions on Computational Biology and Bioinformatics(CCF Rank B), 2015, 12(1): 219-233.
[19].Guoxian Yu*, Huzefa Rangwala, Carlotta Domeniconi, Guoji Zhang, Zhiwen Yu. Protein Function Prediction with Incomplete Annotations,IEEE/ACM Transactions on Computational Biology and Bioinformatics(CCF Rank B), 2014, 11(3): 579-591.
[20].Guoxian Yu*, Huzefa Rangwala, Carlotta Domeniconi, Guoji Zhang, Zhiwen Yu. Protein Function Prediction using Multi-label Ensemble Classification,IEEE/ACM Transactions on Computational Biology and Bioinformatics(CCF Rank B), 2013, 10(4): 1045-1057.
[21].Jinzheng Tu+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Guoqiang Xiao, Maozu Guo. Multi-Label Crowd Consensus via Joint Matrix Factorization,Knowledge and Information Systems(CCF Rank B), 2020, 36(1): 303-310.
[22].Guoxian Yu*, Guoji Zhang, Zili Zhang, Zhiwen Yu, Lin Deng. Semi-Supervised Classification based on Subspace Sparse Representation,Knowledge and Information Systems(CCF Rank B), 2015, 43 (1): 81-101.
[23].Guoxian Yu*, Guoji Zhang, Carlotta Domeniconi, Zhiwen Yu and Jane You. Semi-Supervised Classification based on Random Subspace Dimensionality Reduction,Pattern Recognition(CCF Rank B), 2012, 45(3): 1119-1135.
[24].Yingwen Zhao+, Jun Wang, Jian Chen, Xiangliang Zhang, Maozu Guo*,Guoxian Yu*. A Literature Review of Gene Function Prediction by Modeling Gene Ontology,Frontier in Genetics, 2020, 11: 400.
[25].Yuehui Wang+, Maozu Guo, Yazhou Ren, Lianyin Jia,Guoxian Yu*. Drug Repositioning based on Individual Bi-random Walks on a Heterogeneous Network,BMC Bioinformatics(CCF Rank C), 2019, 20(S15): 547.
[26].Guoxian Yu*, Chang Lu+, Jun Wang. NoGOA: predicting noisy GO annotations using evidences and sparse representation,BMC Bioinformatics(CCF Rank C), 2017, 18: 350.
[27].Guoxian Yu*, Hailong Zhu, Carlotta Domeniconi. Predicting Protein Function using Incomplete Hierarchical Labels,BMC Bioinformatics(CCF Rank C), 2015, 16: 1.
[28].Guoxian Yu*, Hailong Zhu, Carlotta Domeniconi, Jiming Liu. Predicting protein function via downward random walks on a gene ontology,BMC Bioinformatics(CCF Rank C), 2015, 16: 271.
[29].Guoxian Yu*, Wei Luo, Guangyuan Fu, Jun Wang. Interspecies gene function prediction using semantic similarity,BMC Systems Biology, 2016, 10: 361.
[30].Guoxian Yu*, Hailong Zhu, Carlotta Domeniconi, Maozu Guo. Integrating Multiple Networks for Protein Function Prediction,BMC Systems Biology, 2015, 9(S1): S3.
[31].Guoxian Yu*, Guangyuan Fu+, Chang Lu+, Yazhou Ren, Jun Wang*. BRWLDA: Bi-random walks for predicting lncRNA-disease associations,Oncotarget, 2017, 8(36): 60429-60446.
[32].Xia Chen+,Guoxian Yu*, Qiaoyu Tan, Jun Wang. Weighted Samples based Semi-Supervised Classification,Applied Soft Computing, 2019, 79: 46-58.
[33].Jun Wang, Guangjun Yao,Guoxian Yu*. Semi-supervised classification by discriminative regularization,Applied Soft Computing, 2017, 58: 245-255.
[34].Guoxian Yu, Guoji Zhang, Zhiwen Yu*, Carlotta Domeniconi, Jane You, Guoqiang Han. Semi-Supervised Ensemble Classification in Subspaces, Applied Soft Computing,Applied Soft Computing,2012, 12(5): 1511-1522.
[35].Yuehui Wang+,Guoxian Yu*, Jun Wang, Guangyuan Fu, Maozu Guo, Carlotta Domeniconi. Weighted Matrix Factorization on multi-relational data for LncRNA-Disease Association prediction,Methods, 2020, 173: 32-43.
[36].Yingwen Zhao+, Guangyuan Fu+, Jun Wang, Maozu Guo,Guoxian Yu*. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing,Genomics, 2019, 111(3): 334-342.
[37].Qiaoyu Tan+, Yezi Liu, Xia Chen,Guoxian Yu*. Multi-Label Classification based on Low Rank Representation for Image Annotation,Remote Sensing, 2017, 9(2): 109.
[38].赵颖闻+,王峻,郭茂祖,张自力,余国先*.基于0-1矩阵分解的蛋白质功能预测,中国科学-信息科学, 2019, 49(9): 1159-1174.
[39].路畅+,陈霞,王峻,余国先*,余志文.基于稀疏语义的蛋白质噪声功能标注识别,中国科学-信息科学, 2018. 48(8): 1035-1050.
[40].余国先*,傅广垣+,王峻,郭茂祖.基于降维的蛋白质不相关功能预测,中国科学-信息科学, 2017, 47(10): 1349-1368.
[41].傅广垣+,余国先*,王峻,张自力.基于有向混合图的蛋白质新功能预测,中国科学-信息科学,2016, 46(4): 461-475.
[42].王星+,王峻*,余国先,郭茂祖.基于网络约束双聚类的癌症亚型分类,计算机学报, 2019, 42(6): 1274-1288.
[43].谭桥宇+,余国先,王峻*,郭茂祖.基于标记与特征依赖最大化的弱标记集成分类,软件学报, 2017, 28(11): 2851-2864.
[44].余国先,王可尧,傅广垣,王峻*,曾安.基于多网络数据协同矩阵分解的蛋白质功能预测,计算机研究与发展, 2017, 54(12): 2660-2673.
[45].傅广垣+,余国先*,王峻,郭茂祖.基于正负样例的蛋白质功能预测,计算机研究与发展, 2016, 53(8): 1753-1765.
主要会议论文
[46].Guangyang Han+, Jinzheng Tu+,Guoxian Yu*, Jun Wang, Carlotta Domeniconi. Crowdsourcing with Multiple-Source Knowledge Transfer, 29th International Joint Conference on Artificial Intelligence (IJCAI) (CCF Rank A), 2020, pp. 2908-2914.
[47].Yuying Xing+,Guoxian Yu*, Jun Wang, Carlotta Domeniconi, Xiangliang Zhang. Weakly-Supervised Multi-view Multi-instance Multi-label Learning, 29th International Joint Conference on Artificial Intelligence (IJCAI) (CCF Rank A), 2020, pp. 2908-2914.
[48].Shichao Pei, Lu Yu,Guoxian Yu, Xiangliang Zhang. REA: Robust Cross-lingual Entity Alignment Between Knowledge Graphs, 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (CCF Rank A), 2020.
[49].Tingting Yu+,Guoxian Yu*, Jun Wang and Maozu Guo. Partial Multi-label Learning with Label and Feature Collaboration, 25th International Conference on Database Systems for Advanced Applications (DASFAA) (CCF Rank B), 2020.
[50].Shaowei Wei+, Jun Wang*,Guoxian Yu, Carlotta Domeniconi, Xiangliang Zhang. Multi-View Multiple Clusterings using Deep Matrix Factorization, 34rd AAAI Conference on Artificial Intelligence (AAAI) (CCF Rank A), 2020, pp. 6348-6355.
[51].Jinzheng Tu+,Guoxian Yu*, Jun Wang, Carlotta Domeniconi, Xiangliang Zhang. Attention-Aware Answers of the Crowd, 20th SIAM Conference on Data Mining (SDM) (CCF Rank B), 2020, pp. 451-459.
[52].Shixin Yao+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Xiangliang Zhang. Multi-View Multiple Clustering, 28th International Joint Conference on Artificial Intelligence (IJCAI) (CCF Rank A), 2019, pp. 4121-4127.
[53].Xia Chen+,Guoxian Yu*, Jun Wang, Carlotta Domeniconi, Zhao Li, Xiangliang Zhang. ActiveHNE: Active Heterogeneous Network Embedding, 28th International Joint Conference on Artificial Intelligence (IJCAI) (CCF Rank A), 2019, pp. 2123-2129.
[54].Xing Wang+, Jun Wang*, Carlotta Domeniconix,Guoxian Yu, Guoqiang Xiao, Maozu Guo. Multiple Independent Subspace Clusterings, 33rd AAAI Conference on Artificial Intelligence (AAAI) (CCF Rank A), 2019, pp. 5353-5360.
[55].Yuying Xing+, Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Zili Zhang, Maozu Guo Multi-View Multi-Instance Multi-Label Learning based on Collaborative Matrix Factorization, 33rd AAAI Conference on Artificial Intelligence (AAAI) (CCF Rank A), 2019, pp. 5508-5515.
[56].Xuanwu Liu+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Yazhou Ren, Maozu Guo. Ranking-based Deep Cross-modal Hashing, 33rd AAAI Conference on Artificial Intelligence (AAAI) (CCF Rank A), 2019, pp. 4400-4407.
[57].Zhao Li*, Xia Chen+, Xuming Pan, Pengcheng Zou, Yuchen Li,Guoxian Yu. SHOAL: Large-scale Hierarchical Taxonomy via Graph-based Query Coalition in E-commerce, 45th International Conference on Very Large Data Bases (VLDB) (CCF Rank A), 2019, 12(12): 1858-1861.
[58].Xuanwu Liu, Zhao Li, Jun Wang, Guoxian Yu*, Carlotta Domeniconi, Xiangliang Zhang. Cross-modal Zero-shot Hashing, IEEE International Conference on Data Mining (ICDM) (CCF Rank B), 2019, pp. 449-458.
[59].Shixin Yao+,Guoxian Yu, Xing Wang, Jun Wang*, Carlotta Domeniconi, Maozu Guo Discovering Multiple Co-Clusterings in Subspaces, SIAM Conference on Data Mining (SDM) (CCF Rank B), 2019, pp. 423-431.
[60].Yuehui Wang+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Xiangliang Zhang, Maozu Guo. Selective Matrix Factorization for Multi-Relational Data Fusion, 24th International Conference on Database Systems for Advanced Applications (DASFAA) (CCF Rank B), 2019, pp. 313-329.
[61].Yuying Xing+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Zili Zhang. Multi-Label Co-Training, 27th International Joint Conference on Artificial Intelligence (IJCAI) (CCF Rank A), 2018, pp.2882-2888.
[62].Qiaoyu Tan+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Zili Zhang. Incomplete Multi-View Weak-Label Learning, 27th International Joint Conference on Artificial Intelligence (IJCAI) (CCF Rank A), 2018, pp.2703-2709.
[63].Jinzheng Tu+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Guoqiang Xiao, and Maozu Guo. Multi-Label Answer Aggregation based on Joint Matrix Factorization, International Conference on Data Mining (ICDM) (CCF Rank B), 2018, pp.517-526.
[64].Xing Wang+,Guoxian Yu, Carlotta Domeniconi, Jun Wang*, Zhiwen Yu, and Zili Zhang. Multiple Co-Clusterings, International Conference on Data Mining (ICDM) (CCF Rank B), 2018, pp. 1308-1313.
[65].Xia Chen+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Zhao Li, and Zili Zhang. Cost Effective Multi-label Active Learning via Querying Subexamples, International Conference on Data Mining (ICDM) (CCF Rank B), 2018, pp. 905-910.
[66].Guoxian Yu*, Xia Chen+, Carlotta Domeniconi, Jun Wang, Zhao Li, Zili Zhang, and Xindong Wu. Feature-induced Partial Multi-label Learning, International Conference on Data Mining (ICDM) (CCF Rank B), 2018, pp. 1398-1403.
[67].Qiaoyu Tan+,Guoxian Yu*, Jun Wang, Zili Zhang, Carlotta Domeniconi. Multi-view Weak-label Learning based on Matrix Completion, 18th SIAM Conference on Data Mining (SDM) (CCF Rank B), 2018, pp. 450-458.
[68].Jie Zeng+,Guoxian Yu*, Jun Wang, Maozu Guo, Xiangliang Zhang. DMIL-III: Isoform-Isoform Interaction Prediction using Deep Multi-Instance Learning method. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF Rank B), 2019, pp. 171-176.
[69].Guangjie Zhou+, Jun Wang, Xiangliang Zhang, andGuoxian Yu*. DeepGOA: Predicting Gene Ontology Annotations of Proteins via Graph Convolutional Network, IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF Rank B), 2019, pp. 1836-1841.
[70].Guoxian Yu, Yuehui Wang, Jun Wang*, Guangyuan Fu, Maozu Guo, Carlotta Domeniconi. Weighted Matrix Factorization based Data Fusion for Predicting lncRNA-disease Associations. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CCF Rank B), 2018, pp. 572-577.
[71].Xia Chen+,Guoxian Yu*, Carlotta Domeniconi, Jun Wang, Zili Zhang. Matrix Factorization for Identifying Noisy Labels of Multi-label Instances, 15th Pacific Rim International Conference on Artificial Intelligence (PRICAI) (CCF Rank C), 2018, pp. 508-517
[72].Yanming Yu+,Guoxian Yu*, Xia Chen+ and Yazhou Ren. Semi-supervised Multi-label Linear Discriminant Analysis, 24th International Conference on Neural Information Processing (ICONIP) (CCF Rank C), 2017, pp. 688-698.
[73].Guoxian Yu*, Huzefa Rangwala, Carlotta Domeniconi, Guoji Zhang, Zili Zhang. Protein Function Prediction by Integrating Multiple Kernels, 23rd International Joint Conference on Artificial Intelligence (IJCAI) (CCF Rank A), 2013, pp.1869-1875.
[74].Guoxian Yu*, Carlotta Domeniconi, Huzefa Rangwala, Guoji Zhang. Protein Function Prediction using Dependence Maximization, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD) (CCF Rank B), 2013, pp. 574-589.
[75].Guoxian Yu*, Carlotta Domeniconi, Huzefa Rangwala, Guoji Zhang, Zhiwen Yu. Transductive Multi-label Ensemble Classification for Protein Function Prediction, Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery in Database (KDD) (CCF Rank A), 2012, pp. 1077-1085.
招生意向
每年招收博士生1-2名,硕士生2-3人,本科生科研助理2-3人。
欢迎对机器学习、数据挖掘、生物医学数据分析、大数据挖掘和深度学习等研究方向和平台感兴趣的研究生(+本科生)加入研究小组。为同学们提供发表高水平科研与应用成果的精细指导,优良平台和学术氛围;为同学们提供争取创新项目、参加国内外科技竞赛、前往全球著名高校/企业深造与就业的机会与桥梁。
本人研究生从事的工作领域
任职于互联网公司(阿里巴巴,Vivo和美图等),银行,事业单位及大学。
相关话题/山东大学 软件学院
山东大学软件学院导师教师师资介绍简介-郑永清
郑永清教授,博士生导师中国山东省济南市历下区舜华路1500号250101zhengyongqing@dareway.com.cn·1986年本科毕业于山东大学计算机科学系·1991年硕士毕业于山东大学计算机科学系·2015年博士毕业于山东大学计算机科学与技术学院课程教学·软件项目管理专业课研究生研究 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-张世栋
张世栋教授邮箱:zsd@sdu.edu.cn1993.07-1995.08山东大学,助教1995.09-2000.08山东大学,讲师2000.09-2005.08山东大学,副教授2005.09-至今山东大学,教授研究方向数据科学与智能数据分析讲授课程数据库系统专业课本科生数据库设计与实现专业课研究生 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-蒋亚丽
蒋亚丽山东大学软件学院讲师山东省济南市高新区舜华路1500号山东大学软件园校区,250101jiang.yl@sdu.edu.cn研究方向:从事信息安全与密码学研究,主要研究领域为公钥安全认证体系及基于格的密码算法设计与分析,包括:云计算安全、大数据隐私保护、物联网安全等。讲授课程:承担《信息安全专 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-蒋瀚
蒋瀚山东大学,软件学院,副教授山东省济南市高新区舜华路1500号山东大学软件园校区,250101jianghan@sdu.edu.cn研究方向:长期从事信息安全与密码学研究,主要研究领域为安全协议设计与分析以及后量子公钥密码算法设计与分析,包括多方密码协议、安全多方计算协议、云计算安全、大数据与人工 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-林丰波
林丰波E-mail:linfbatsdu.edu.cn山东大学计算机软件专业本科山东大学计算机科学与技术专业研究生讲授课程信息安全导论安全协议与标准操作系统安全网络与信息安全计算机网络课程设计移动互联网开发技术承担项目面向IPV6的互联网安全体系结构和关键技术研究,2007XKMS安全服务器系统的研 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-孔凡玉
孔凡玉,博士,副教授地址:山东省济南市高新区舜华路1500号山东大学软件园校区,250101研究方向:主要从事密码理论与技术、网络信息安全等研究,包括密码算法CPU/GPU/FPGA/ASIC高性能实现、侧信道攻击与防御技术、新型密码算法与协议,以及大数据安全、人工智能安全、物联网安全等。讲授课程: ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-苗全
苗全E-mail:quan.m@sdu.edu.cn西电电子科技大学电子工程专业本科、硕士山东大学信息科学与工程学院通信与信息系统专业博士承担的课程微电子学与信息安全专用芯片熟悉领域及研究方向(1)对计算机高速总线接口技术有较深入的研究,尤其是对PCI、PCI-E总线以及在此基础上的SR-IOV技术 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-刘晓东
刘晓东,讲师,山东大学计算机软件与理论专业博士研究生研究方向:主要包括计算机数据安全、密码学及应用、区块链技术应用等。学术工作:在国际及国内核心期刊发表了密码学方向学术论文十余篇,其中以第一作者发表八篇。作为国家密码行业标准化技术委员会专家成员,牵头并参与制定了10余项商用密码领域内国家标准,其中牵 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-商建伟
商建伟讲师山东省济南市舜华路1500号山东大学软件园校区教师科研楼415室邮编:250101电话:**研究方向公钥密码、移动互联网安全、物联网安全、标识密码算法讲授课程公钥密码学研究内容移动互联网领域安全研究:研究SE、TEE、软SE等实现技术,实现应用场景的移动安全解决方案,对密钥的安全存储、生物 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22山东大学软件学院导师教师师资介绍简介-潘鹏
潘鹏讲师 ...山东大学师资导师 本站小编 Free考研考试 2020-11-22