删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

山东大学物理学院导师教师师资介绍简介-仝殿民

本站小编 Free考研考试/2020-11-21

基本信息
姓名
仝殿民

职称

教授

Email
tdm@sdu.edu.cn

电话
**

地址
250100 济南市山大南路27号 山东大学物理学院

其它主页地址




学习经历
1978.10-1982.07 山东大学物理系,获学士学位;
1987.09-1990.07 吉林大学物理系理论物理专业,获硕士学位;
1991.09-1994.07 吉林大学物理系理论物理专业,获博士学位。



工作经历
工作经历
1982.08-1985.12 中国科学院光电技术研究所,研究实习员;
1986.01-1987.08, 1990.09-1991.08 烟台大学物理系,助教;
1994.09-2007.09 山东师范大学物理系,教授、博士生导师;
2007.09-今 山东大学物理学院,教授、博士生导师。

1994年晋升为教授,2009年晋升教授二级岗, 2013年起为泰山********。


工作介绍
本人及所在的山东大学物理学院量子信息组主要从事量子信息的物理基础研究,过去几年,我们在量子物理基础理论、量子信息、数学物理等多个研究领域完成了一些具有国际影响的工作。代表性成果:
1)提出了开放系统的几何相理论(PRL93,080405,2004),为几何相在开放系统的应用奠定了基础,所给公式已成为计算混态几何相的基本依据被广泛应用于各类物理体系。该理论所确定的几何相位被加拿大Laflamme组的实验证实(PRL105,240406,2010);
2)证明了通常哈密顿量H(t)的本征值、本征函数描述的量化绝热条件的非充分性(PRL95,110407,2005),并在后续的工作中进一步确立了其性质和应用范围(PRL98,150402,2007;PRL104,120401,2010)。 该绝热条件非充分性的理论结果被中科大杜江峰组的实验证实(PRL101,060403,2008);
3)提出了非绝热Holonomy量子计算理论,并应用于开放系统普适量子门的设计(NJP14,103035,2012;PRL109,170501,2012;PRA89,042302,2014)。该理论旨在克服量子系统的控制误差和退相干问题——这是实现量子计算所面临的主要挑战。该理论已被清华大学龙桂鲁组(PRL110,190501,2013)、苏黎世理工与加州理工的联合组独立的两个实验证实(Nature496,482,2013);
4)发现了Kochen-Specker(KS)不等式和一般Noncontextuality (NC)不等式的共存性。KS和NC不等式被用于论证量子体系是否存在隐变量、以澄清量子力学的完备性。这一发现及其严谨的证明已被审稿人被推荐为Rapid Communications.在PRA发表(PRA89,010101(R),2014)。
5) 提出了关于准对角密度矩阵相干性度量的可加性公理假定,并证明了基于相对熵测量的相干性完全冻结定理。关于该工作的两篇论文都被推荐为Rapid Communications发表在PRA(PRA93,060303(R),2016;PRA94,060302(R),2016).

除上述代表性成果外,我们还完成了一些其他有影响的工作,如,辫子群的不可约表示理论已被写入多本专著和研究生教材,并获山东省科技进步一等奖;高维密集编码量子通信方案作为高密编码领域的首个方案,SCI他引260多次。近几年,6篇论文发表在PRL上,研究成果SCI他引1300余次,引用杂志包括Nature、Science、PRL和著名评论刊物Rev. Mod. Phys.、Phys. Rep.等。研究成果先后获得山东省科技进步一等奖、教育部自然科学一等奖、国家自然科学二等奖。



代表性论文
作为第一和通信作者6篇PRL、3篇PRA Rapid Communication,30篇PRA。

1. C. L. Liu, Yan-Qing Guo, D. M. Tong
Enhancing coherence of a state by stochastic strictly incoherent operations
Phys. Rev. A 96, 062325 (2017)
2. P. Z. Zhao, Xiao-Dan Cui, G. F. Xu, Erik Sj?qvist, D. M. Tong
Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
Phys. Rev. A 96, 052316 (2017)
3. P. Z. Zhao, G. F. Xu, Q. M. Ding, Erik Sj?qvist, D. M. Tong
Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces
Phys. Rev. A 95, 062310 (2017)
4. G. F. Xu, P. Z. Zhao, D. M. Tong, Erik Sj?qvist
Robust paths to realize nonadiabatic holonomic gates
Phys. Rev. A 95, 052349 (2017)
5. G. F. Xu, P. Z. Zhao, T. H. Xing, Erik Sj¨oqvist, D. M. Tong,
Composite nonadiabatic holonomic quantum computation
Phys. Rev. A 95, 032311 (2017)
6. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong
Universal freezing of asymmetry
Phys. Rev. A 95, 022323 (2017)
7. Xiao-Dong Yu, Da-Jian Zhang, G. F. Xu, D. M. Tong
Alternative framework for quantifying coherence
Phys. Rev. A 94 (2016) 060302 (Rapid Communications).
8. Pei-Zi Zhao, G F Xu, D M Tong
Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases
Phys. Rev. A 94 (2016) 062327.
9. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong
General approach to find steady-state manifolds in Markovian and non-Markovian systems
Phys. Rev. A 94 (2016) 052132.
10. Xiao-Dong Yu, Da-Jian Zhang, C. L. Liu, D. M. Tong
Measure-independent freezing of quantum coherence
Phys. Rev. A 93 (2016) 060303 (Rapid Communications).
11. Da-Jian Zhang, Hua-Lin Huang, D. M. Tong1
Non-Markovian quantum dissipative processes with the same positive features as Markovian dissipative processes
Phys. Rev. A 93 (2016) 012117.
12. G. F. Xu, C. L. Liu, P. Z. Zhao, D. M. Tong
Nonadiabatic holonomic gates realized by a single-shot implementation
Phys. Rev. A 92 (2015) 052302.
13. J. Zhang, Thi Ha Kyaw, D. M. Tong, Erik Sj?qvist, L. C. Kwek
Fast non-Abelian geometric gates via transitionless quantum driving
Sci. Rep. 5, 18414 (2015).
14. Xiao-Dong Yu, Yan-Qing Guo, D M Tong
A proof of the Kochen–Specker theorem can always be converted to a state-independent noncontextuality inequality
New J. Phys. 17 (2015) 093001.
15. Da-Jian Zhang, Xiao-Dong Yu, D M Tong
Theorem on the existence of a non-zero energy gap in adiabatic quantum computation
Phys. Rev. A 90(2014)042321.
16. Long-Jiang Liu, D M Tong
Completely positive maps within the framework of direct-sum decomposition of state space
Phys. Rev. A 90(2014)012305.
17. X D Yu, D M Tong
Coexistence of Kochen-Specker inequalities and noncontextuality inequalities
Phys. Rev. A 89(2014)010101 (Rapid Communications).
18. J. Zhang, L C Kwek, E Sjoqvist, D M Tong, P Zanardi
Quantum computation in noiseless subsystems with fast non-Abelian holonomies
Phys. Rev. A 89(2014)042302.
19. G F Xu, J Zhang, D M Tong, E Sjoqvist, L C Kwek,
Nonadiabatic holonomic quantum computation in decoherence-free subspaces
Phys. Rev. Lett, 109(2012)170501.
20. E Sjoqvist,D M Tong, L M Andersson, B Hessmo, M Johansson, K Singh
Non-adiabatic holonomic quantum computation
New J phys., 14(2012)103035
21. M Johansson, E Sjoqvist, L M Andersson, M Ericsson, B Hessmo, K Singh, D M Tong
Robustness of nonadiabatic holonomic gates
Phys. Rev. A 86(2012)062322
22. D M Tong,
Reply to comments on quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation
Phys. Rev. Lett 106 (2011)138903.
23. X J Fan, Z B Liu, Y Liang, K N Jia, D M Tong,
Phase control of probe response in a Doppler-broadened N-type four-level system
Phys. Rev. A 83(2011)043805.
24. D M Tong
Quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation
Phys. Rev. Lett., 104(2010) 12:120401
25. C W Niu, G F Xu, L J Liu, L Kang, D M Tong, L C Kwek,
Separable states and geometric phases of an interacting two-spin system
Phys. Rev. A, 81(2010)1:012116
26. S Yin, D M Tong
Geometric phase of a quantum dot system in nonunitary evolution
Phys. Rev. A 79 (2009)4: 044303
27. C S Guo, L L Lu , G X Wei, J L He, D M Tong
Diffractive imaging based on a multipinhole plate
Optics Letters 34(2009)12:1813
28. D M Tong, K. Singh, L C Kwek, C H Oh
Sufficiency Criterion for the Validity of the Adiabatic Approximation
Phys. Rev. Lett., 98(2007)15:150402
29. X X Yi, D M Tong, L C Wang, L C Kwek, and C. H. Oh
Geometric phase in open systems: Beyond the Markov approximation and weak-coupling limit
Phys. Rev. A, 73(2006)052103.
30. D M Tong, K. Singh, L C Kwek, C H Oh
Quantitative conditions do not guarantee the validity of the adiabatic approximation
Phys. Rev. Lett., 95(2005)11:110407
31. D M Tong, E. Sjoqvist, S. Filipp, L C Kwek, C H Oh
Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed
Phys. Rev. A 71(2005)032106
32. D M Tong, E. Sjoqvist, L C Kwek, C H Oh
Kinematic approach to geometric phase of mixed states under nonunitary evolutions
Phys. Rev. Lett., 93(2004)8:080405
33. D M Tong, L C Kwek, C H Oh, J L Chen, and L Ma
Operator-sum representation of time-dependent density operators
Phys. Rev. A, 69(2004)054102
34. D M Tong, J L Chen, L C Kwek, C. H. Lai, and C H Oh
General formalism of Hamiltonians for realizing a prescribed evolution of a qubit
Phys. Rev. A, 68(2003)062307
35. D M Tong, E. Sjoqvist, L C Kwek, C H Oh and M Ericsson
Relation between the geometric phases of the entangled biparticle system and their subsystems
Phys. Rev. A, 68(2003)022106
36. K Sigh, D M Tong, K Basu, J L Chen and J F Du
Geometric phase for non-degenerate and degenerate mixed states
Phys. Rev. A, 67(2003)3:032106
37. S X Liu, G L Long, D M Tong and Feng Li
General scheme for superdense coding between multiparties
Phys. Rev. A, 65(2002)02



相关话题/山东大学 物理学院