蓝细菌,又称为蓝藻或蓝绿藻,是地球上最古老的微生物之一。它们能通过植物型光合作用,将二氧化碳固定并转化为各类碳水化合物。研究发现很多蓝细菌在高盐环境下在细胞内合成并积累蔗糖来抵抗逆境。利用这一生理特点,发展蓝细菌细胞工厂进行糖类分子的合成和分泌,将二氧化碳和太阳能直接转化为蔗糖产品,是一条具有潜力的新型糖原料供给路线。
青岛能源所微生物代谢工程团队(http://mme.qibebt.ac.cn/)长期以来致力于蓝细菌糖类物质合成研究,其近期研究结果揭示了蓝细菌蔗糖合成在调控和代谢方面的若干机理问题。针对前人在集胞藻PCC 6803研究中蔗糖合成转录调控蛋白Slr1588全基因缺失和插入失活两个突变株在盐胁迫条件下表型不一的问题,该团队系统分析了slr1588及下游ggpP基因的结构及转录情况,证明了ggpP基因转录起始于slr1588基因编码框内,slr1588全基因缺失所导致的对下游ggpP基因的转录抑制,是突变株盐敏感表型的真正原因。基于新构建的slr1588突变株,Slr1588被证明能调控蔗糖合成关键酶spsA基因的转录和蔗糖分解酶活性。该研究为进一步解析蓝细菌蔗糖合成调控机制和针对性强化蔗糖合成途径提高蔗糖产量奠定了理论基础,相关研究结果发表在Frontiers in Microbiology杂志(Song et al., 2017, Front Microbiol 8:1176)。
此外,该团队在蓝细菌蔗糖合成代谢机理研究中也取得新进展(Qiao et al., Appl Environ Microbiol, doi: 10.1128/AEM.02023-17)。在蓝细菌中,由于蔗糖合成与糖原合成使用相同的前体物——葡萄糖-1-磷酸,因此一般认为二者之间存在合成竞争关系,抑制糖原合成将能促进蔗糖合成。然而,该研究团队的研究结果表明情况并非如此。该团队利用核糖体开关策略,实现了对聚球藻PCC 7942工程菌株中糖原合成的梯度抑制,发现糖原水平的下降并没有带来蔗糖合成水平的提升,反而降低了蔗糖产量;而在蓝细菌中增强糖原合成,则有效提高了蔗糖合成水平。该结果表明糖原合成并非是蓝细菌蔗糖合成的竞争性途径,其更有可能作为一个“碳库”为蔗糖合成提供碳素支持(图1)。该研究结果改变了业界对蓝细菌中糖原合成与蔗糖合成关系的传统认识,同时也为进一步提高基因工程蓝细菌蔗糖产量提供了新的改造策略。
上述研究获得了国家杰出青年科学基金、中德科学中心项目、国家自然科学基金青年基金等项目的支持。(文/罗泉 谈晓明 图/罗泉)
图1 聚球藻PCC 7942工程菌株中蔗糖与糖原合成关系简图
原文链接:
https://doi.org/10.3389/fmicb.2017.01176
https://doi.org/10.1128/AEM.02023-17
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
青岛能源所在光驱固碳蓝细菌合成蔗糖研究方面取得新进展_青岛生物能源与过程研究所
青岛生物能源与过程研究所 免费考研网/2017-12-08
相关话题/基因 工程 微生物 蔗糖 路线
青岛能源所代谢工程提升工业产油微藻固定二氧化碳效率_青岛生物能源与过程研究所
工业产油微藻能通过光合作用将二氧化碳与光能大规模地转化为油脂,因此作为一种清洁能源生产和二氧化碳高值化的潜在方案,在国内外受到了广泛关注。针对如何提升工业产油微藻的固碳能力这一关键问题,青岛能源所示范了一种通过调控RuBisCO(核酮糖-1,5-二磷酸羧化酶/加氧酶)的激活酶来增强细胞固碳活性,从而 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08“非常规”P450反应拓展天然产物化学空间——青岛能源所酶工程团队在Natural Product Reports发表封面文章_青岛生物能源与过程研究所
细胞色素P450酶(cytochromeP450enzymes)是一类亚铁血红素—硫醇盐(heme-thiolate)蛋白超家族,因其还原态与一氧化碳结合后在450nm处的特征吸收峰而得名。P450酶广泛存在于动植物和微生物体内,具有底物多样性和催化反应类型多样性的特点,在天然产物生物合成过程中扮演 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08青岛能源所微生物组大数据分析工具开发取得新进展_青岛生物能源与过程研究所
元基因组是当前微生物组大数据最主要的存在形式之一。由于元基因组数据的复杂性、异质性以及指数级增长的体量,从中深度且快速发掘微生物群落结构和功能上的变化规律,一直是业界的一个重要技术瓶颈。近日,青岛能源所单细胞研究中心发表了元基因组高性能计算分析软件Parallel-META3,能够深入、全面、快速地 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08青岛能源所开发微生物组内部代谢互作示踪新技术_青岛生物能源与过程研究所
微生物组(Microbiome)是微生物在自然界中的存在形式,它们无处不在、无所不能,与我们每个人乃至海洋、土壤、大气的健康都息息相关。在微生物组的内部,不同种类的微生物之间存在着复杂、精妙的相互作用与影响,这一跨物种的细胞间代谢互作网络是群落功能和进化的基础。然而由于自然界中绝大部分微生物尚难以培 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08青岛能源所建立工业产油微藻基因敲低技术_青岛生物能源与过程研究所
微藻通过光合作用将二氧化碳、光和水转化为油脂,因此,作为一种潜在的清洁能源生产和二氧化碳高值化方案,工业产油微藻受到了广泛关注。然而,藻类高效遗传工具的匮乏,一直是工业产油微藻分子育种和光驱固碳合成生物技术的重要瓶颈之一。近日,中科院青岛能源所与中科院武汉水生所合作,以微拟球藻为模式,率先建立了工业 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08首个“微生物组大数据搜索引擎”在青上线“互联网+菌群”效应初显_青岛生物能源与过程研究所
微生物组(又称“菌群”)在自然界中无所不在。在人体内外,菌群与生俱来、又与我们相伴终身,和我们的发育和健康息息相关。因此人体微生物组也被称为每个人的“第二基因组”。一个“第二基因组”可由数百万个微生物基因组成,其数据量是一个人类基因组的成百上千倍。因此,根据人类已经积累的海量微生物组数据,寻找“结构 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08青岛能源所建立工业产油微藻基因组编辑技术_青岛生物能源与过程研究所
自然界的一些真核微藻能够通过光合作用固定二氧化碳,并将其转化和存储为油脂。因此,作为一种潜在可规模化的清洁能源生产和固碳减排方案,微藻能源近年来受到了广泛关注。然而,高效遗传工具的匮乏,极大限制了工业产油微藻的机制研究和分子育种。近日,青岛能源所单细胞研究中心以微拟球藻为模式,率先建立了基于Cas9 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08《知识产权动态》摘要:专利技术秘密许可注意事项、知识产权重大事件、异亮氨酸微生物发酵技术专利分析等_青岛生物能源与过程研究所
图书馆根据中科院科技促进发展局主办、中科院知识产权信息服务中心承办的《知识产权动态》内容摘编,为大家节约阅读时间。一、美国律师事务所提出伴随专利的技术秘密许可注意事项8月16日,美国KTS律师事务所提出伴随专利技术秘密许可的重要注意事项:1、考虑到发明的复杂性、应用领域及整体交易价值的不同,专利和技 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08科学家提出编码基因重建新方法_青岛生物能源与过程研究所
中科院北京生命科学研究院计算基因组学实验室研究员赵方庆团队提出一种基于密码子deBruijn图的新算法,使用非拼接策略直接对转录组测序数据进行编码基因识别和重建,解决了编码基因识别效率低且不完整的难题,该方法在非模式生物的进化基因组研究领域具有很大的应用前景。该成果已在线发表在《基因组生物学》上。 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08新研究发现地下有庞大的微生物种群_青岛生物能源与过程研究所
地球上有约五分之一的生物藏身地下,但人们对地下生物王国知之甚少。美国科学家日前在科罗拉多州发现了新的庞大地下微生物种群,并对这些微生物进行了基因测序。 美国劳伦斯伯克利国家实验室和加利福尼亚大学伯克利分校的研究人员日前在英国《自然·通讯》杂志网络版上报告说,他们在科罗拉多州赖夫尔镇附近一个地下蓄水 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08