天然产物是药物开发的宝库。来自苏黎世联邦理工学院(ETH Zürich)的Gisbert Schneider教授(点击查看介绍)等在Nature Chemistry上撰写综述文章,总结近来天然产物启发药物发现的理论和实践,以及计算机辅助的天然产物研究。(Counting on natural products for drug design.Nature Chem.,2016,8, 531-541, DOI: 10.1038/NCHEM.2479)
药物研究人员经常在具有特定活性骨架、活性基团和优秀生物活性的天然产物分子中找到灵感,特别是在人类与传染病和癌症抗争的漫长历史中,许多天然产物扮演了重要的角色。例如,一些他汀类重磅药物就从天然产物衍生而来,包括治疗高胆固醇血症的瑞舒伐他汀(Rosuvastatin),药效团就copy了来自烂柠檬中青霉菌Penicillium citrinum的美伐他汀(Mevastain),如图1所示。
图1. 美伐他汀和瑞舒伐他汀拥有不同的骨架结构,但是药效团相同。亲脂性基团用绿色表示,氢键受体用红色表示,氢键受体和供体用品红色表示。如两个化合物的晶体结构叠加图所示(瑞舒伐他汀为蓝色,美伐他汀为绿色),它们与靶标3-羟基-3-甲基戊二酰辅酶A还原酶的关键作用相同。酶的口袋溶剂可及表面环绕着瑞舒伐他汀,计算机药效团模型也支持此作用。图片来源:Nature Chem.
正因为如此,天然产物在药物发现中的作用重要且持久。一项分析数据显示,从1939年起美国FDA批准上市的药物中,有相当数量含有天然产物片段,见图2所示。主要的天然产物数据库见表1。
图2. a.天然产物药效片段。天然产物数据库The Dictionary of Natural Products database含有210,213个天然产物。通过计算机辅助虚拟反合成程序(RECAP法),产生了134,102个不同的片段(分子量在100到300之间)。许多片段出现在上市药物中,这些片段也能用于计算机从头设计药物分子,目前已经广泛运用于当今基于结构的药物设计软件中。b. 每年上市药物中含有天然产物片段的平均数。柱状图(蓝色)为片段得分,片段得分 = 匹配的片段数量/分子量。黑点代表每年美国FDA批准的药物数量。图片来源:Nature Chem.
天然产物与合成小分子药物相比具有以下特点:
①复杂的化学结构;
②大量的sp3杂化的桥头碳原子和手性中心;
③含氮原子少,含氧原子多;
④多具有脂肪烷烃,只有38%的天然产物含有芳香环;
⑤50%的天然分子不含有合成片段,但20%的天然产物环结构存在于上市药物分子中。
现在的药物化学逐渐抛弃单纯的平面分子结构,转而强调三维空间设计,天然产物独特的结构恰好起到参考作用。90年代起,基于片段的药物发现(fragment-based drug discovery)开始崛起,绕开早期药物发现出现的毒性、缺乏有效性等缺陷,并借助于生物物理技术和配体筛选,分子结构逐步链接和增长,从而开发成为具生物活性的先导化合物。计算机辅助药物设计的发展,以及基于片段的从头设计(fragment-based de novo design),成为现代药物设计的重要方法。
天然产物作为先导化合物的起点
在药物设计这场旷日持久的挑战赛中,灵感来自天然产物的合成化合物绝对算是切实可行并富有创新精神的解决方案。从类药化合物总结出来的“五倍律”或“三规则”,有时反倒妨碍了药物先导的发现,不论是合成化合物还是天然产物,运用这些规则时要分外谨慎。图3列举了天然产物到生物活性分子的几个例子。化合物1是脱氧尼博霉素(Deoxynybomycin)的类似物,具有很好的抗金黄色葡萄球菌Staphylococcus aureus活性,而且可溶性更好,显著提高了感染小鼠的生存率。细胞生长抑制剂2来源于Spirotryprostatin B,通过不对称1,3-偶极环加成反应得到了这个包括季碳核心和三个叔碳手性中心的结构。基于生物活性合成的化合物3,拥有醉茄内酯Withanolide A的结构单元,可作为Hedgehog信号通路Smoothened受体的拮抗剂。化合物4是神经突生长的引诱剂,核心结构来自militarinone。大环类天然产物通常情况下难以进行结构优化,采用多样性导向合成策略可以得到结构多样的化合物库(如化合物5),而基于活性导向合成策略则得到更类似天然产物的化合物库(如内酰胺6,一种雄激素受体激动剂)。
图3 天然产物启发具有生物活性的合成化合物。图片来源:Nature Chem.
计算机辅助设计
天然产物引发了灵感,计算机程序则提高了合理设计分子的效率。分子骨架或框架作为桥梁连接了天然产物和合成化合物这两个世界。计算机软件的核心是将天然产物和合成化合物形象化,通过逐步简化产生骨架树,得到直观的结构图(图4)。Koch等设计例了从海洋产物二倍半类萜烯dysdiolide的化合物库,其中19%的化合物拥有抑制11β-羟化类固醇脱氢酶I的活性。同样采用提取骨架的理念,2009年Wetzel发布了Scaffold Hunter软件,核心技术是对结构复杂的天然产物进行反卷积(de-convolution)分析,得到虚拟骨架树,使复杂生物活性物质的化学结构数据更直观,相似的结构表现出类似的活性,这种方法曾成功地应用在鉴定丙酮酸激酶的抑制剂和激活剂上。与高通量筛选相比,这种方法的命中率更高。不过,通过基于天然产物片段的分子设计得到的化合物活性经常只是弱到中等,后续进一步的结构优化是提高活性不可缺少的步骤。
图4 计算机辅助设计小分子化合物,从天然产物模板中进行骨架简化。天然产物的骨架结构复杂,人工或计算机辅助进行结构简化,合成容易获得类似片段的骨架结构。一般原则可用同心圆阐明:逐步减少天然产物母核的结构复杂性,分解成片段,产生更小的具有吸引力的化学骨架。图片来源:Nature Chem.
预测天然产物的大分子靶标
缺乏天然产物靶标的确切信息曾一度阻碍了药物化学和药物发现中对分子骨架的设计,现在已经出现了不少颇具创新性的靶标预测工具,可帮助确定生物大分子靶标或者潜在的药物脱靶效应,可能有助于确定天然产物的生物活性。靶标预测可以指导天然产物的生物化学筛选,以减少实验数量,节省宝贵资源。例如,通过反向分子对接,橙皮内酯(meranzin)的靶点被确定为环氧化酶2(cyclooxygenase-2)和过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma);通过使用三维药效团模型Rollinger等人虚拟筛选了Ruta graveolens的16种代谢产物,所用数据集包括2,208种药效团模型,最终确定山小橘碱(arborinine)为人鼻病毒(human rhinovirus)外壳蛋白抑制剂,芸香苦甙(rutamarin)为大麻素受体2(cannabinoid-2 receptor)配体。
PASS是较早面世的一款软件,它通过分子二维化学结构预测生物活性,曾成功应用在90多种海绵生物碱上,其中约80%具有抗肿瘤活性。此外还有很多其他软件或方法,它们的工作原理大都需要依赖以下信息:(1)化学结构类似药物的已知靶标信息,(2)明确的配体-受体对接信息,(3)基因序列和通路信息。这也不难理解这些软件或方法在预测天然产物靶标时经常出现有失误,特别是天然产物结构缺乏上述信息的时候,比如结构特别复杂或者特别新颖。与之相比,SPiDER软件通过拓扑药效团和物理化学性质双重信息来预测靶标,少了诸多限制。例如,在预测大环类天然产物archazolid A的靶标过程中表现出了令人震惊的准确性,预测archazolid A可以抑制5-脂氧合酶和前列腺素E2合酶1,部分激活法尼醇X受体,而且都获得了实验证实。天然产物和靶标的关系见图6所示。
图5. 天然产物和合成生物活性分子的靶标预测以及结构分析。图片来源:Nature Chem.
天然产物在药物发现中有特权?
在药物发现中天然产物常常被提及为特权分子,它们频频在各类生物活性测试中表现出活性。这可能是由两种原因造成:(1)活性筛选时的假阳性,原因可能是天然产物所含活泼和不稳定官能团造成的非特异反应活性、溶解度问题、在测试条件下发生胶体聚集等等;(2)天然产物特定、可逆、浓度依赖的多靶标结合能力,又称为杂泛性。但也要值得注意,分析来看,天然产物中含有“非期望亚结构(undesired substructures)”的比例更高(见图6d、表2),例如约六分之一天然产物含有迈克尔受体基团。合成药物分子的杂泛性更强,更易出现结合多种靶标的情况(见图6e)。
结论和展望
天然产物在药物发现中的地位还无可动摇,现代化学和生物信息学等工具促进了基于天然产物的药物研发,如靶标预测软件、天然产物的代谢物研究、药效团的动力学和热力学帮助发现从天然产物中挖掘中先导化合物,实现从结构到片段再到结构的蜕变!
原文链接:http://www.nature.com/nchem/journal/v8/n6/full/nchem.2479.html
附录 常见天然产物数据库
Dictionary of Natural Productshttp://dnp.chemnetbase.com
Traditional Chinese Medicinehttp://tcm.cmu.edu.tw
SuperNaturalhttp://bioinformatics.charite.de/supernatural/
ChEMBLhttp://www.ebi.ac.uk/chembl/
MarinLithttp://pubs.rsc.org/marinlit/
作者介绍
Gisbert Schneider教授:http://www.x-mol.com/university/faculty/2777
来源:X-Mol
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
Nature Chem.综述:从天然产物到药物设计_青岛生物能源与过程研究所
青岛生物能源与过程研究所 免费考研网/2017-12-08
相关话题/药物 结构 生物 设计 信息
科学家提出编码基因重建新方法_青岛生物能源与过程研究所
中科院北京生命科学研究院计算基因组学实验室研究员赵方庆团队提出一种基于密码子deBruijn图的新算法,使用非拼接策略直接对转录组测序数据进行编码基因识别和重建,解决了编码基因识别效率低且不完整的难题,该方法在非模式生物的进化基因组研究领域具有很大的应用前景。该成果已在线发表在《基因组生物学》上。 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08新研究发现地下有庞大的微生物种群_青岛生物能源与过程研究所
地球上有约五分之一的生物藏身地下,但人们对地下生物王国知之甚少。美国科学家日前在科罗拉多州发现了新的庞大地下微生物种群,并对这些微生物进行了基因测序。 美国劳伦斯伯克利国家实验室和加利福尼亚大学伯克利分校的研究人员日前在英国《自然·通讯》杂志网络版上报告说,他们在科罗拉多州赖夫尔镇附近一个地下蓄水 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08ORNL揭示纤维素乙醇生产中生物量降解的化学机制_青岛生物能源与过程研究所
木质纤维素是一种生产生物燃料和化学品的可持续性原料,它广泛存在于玉米秸秆,稻草和木本植物等中。但是,在生物能源技术中生物量的解构一直是一个复杂的过程。早前美国能源部橡树岭国家实验室(ORNL)的研究人员已经发现了木本植物和废物生物量可以更容易被转化为生物燃料,现在他们又发现了这个过程背后的化学细节: ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08中科院微生物所在细菌耐药基因组学研究获进展_青岛生物能源与过程研究所
中科院微生物所朱宝利课题组在细菌耐药基因组学研究中的最新进展,研究首次以基因组学大数据为依托,深入解析了耐药基因在细菌间的传播网络和规律,对深入认识细菌耐药性的进化、细菌耐药的形成机制等具有重要意义。成果近日在线发表于《应用与环境微生物学》,并将于第82卷22期以“封面故事”形式发表。副研究员为胡永 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Nature Communication:用 DNA 指导金属纳米材料合成_青岛生物能源与过程研究所
在纳米尺度下,对材料和结构进行设计非常困难,这由于金属和半导体材料的物理化学性质在该尺度下会异于常态,对结构的可控性也变得极低。如何根据特定的要求对纳米材料进行设计和合成,并在可控度和精度上取得突破,是当前世界范围内材料和化学工程师共同面对的难题之一。 最近,韩国高丽大学研究教授、成均科技有限公 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Nature:新型催化剂减少生物质制低碳烯烃的甲烷排放_青岛生物能源与过程研究所
低碳烯烃主要指乙烯、丙烯和丁烯,它们是许多塑料和其它工业品的生产原料,一般通过裂解烃原料获取。因此,随着石油储量减少,改用另类原料(比如生物质)的需求变得日益迫切。费托合成制低碳烯烃(FTO)工艺利用从生物质、煤和天然气中获得的合成气(一种氢和一氧化碳的混合物)生产低碳烯烃,但同时也会产生大量多余的 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Nat Commun:科学家成功绘制出人类DNA中的“暗物质”信息_青岛生物能源与过程研究所
安交通大学、萨尔兰大学等机构的研究人员通过研究在深入理解人类基因组上取得了突破性的进展,在250个荷兰家庭中鉴别出大型的DNA突变后,研究人员发现了基因组中部分DNA“暗物质”,相关研究或可帮助全球的研究人员对DNA突变体进行研究,并且利用相关研究结果更好地理解遗传性疾病的发生机制,研究成果发布与N ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08表观遗传学研究获重大突破_青岛生物能源与过程研究所
同济大学研究团队首次从全基因组水平上揭示了小鼠植入前胚胎发育过程中的组蛋白H3K4me3和HK27me3修饰建立过程,并发现宽的H3K4me3修饰在植入前胚胎发育过程中对基因表达发挥重要调控作用。相关成果9月15日在线发表于《自然》。 研究人员利用极少量的细胞检测了小鼠植入前胚胎发育各个时期的组蛋 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08可同时采集光能和机械能的复合能源衣获进展_青岛生物能源与过程研究所
图1.新型全固态智能能源织物的结构示意图。基于织物结构的(a)摩擦纳米发电机(b)纤维太阳能电池,及其局部结构放大示意图(c)和(d)。(e)光电阳极的SEM图片。(f)能源织物的实物光学照片。(f)示意图展示,此种可穿戴的能源织物可以同时将人体运动的机械能和太阳能转化成电能。 随着智能可穿戴设备 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08复旦俞燕蕾团队研发光控微流体新技术 成果发表于《自然》杂志_青岛生物能源与过程研究所
9月8日,复旦大学材料科学系与聚合物分子工程国家重点实验室俞燕蕾教授团队在《自然》(Nature)杂志发表关于光控微流体领域的最新研究成果。 俞燕蕾团队采用自主研发的新型液晶高分子光致形变材料,构筑出具有光响应特性的微管执行器,在几平方厘米的芯片上,通过光操控各种液体的复杂流动,令其蜿蜒而行甚至爬 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08