天然气是蕴藏于地层中以低碳烃类为主体的混合气体的统称,作为一种清洁的能源,有着储量充足、易于开采等优点。除了用于燃烧供能,研究者们希望通过一定的化学手段将天然气转化为高附加值的化学品,比如高分子及药物。天然气中最主要的成分甲烷(CH4)是一个相当稳定的小分子,转化甲烷最重要的过程就是C-H键的活化了。目前,常见的甲烷转化途径有:(1)甲烷与水蒸气反应得到合成气(CO和H2)并进一步利用;(2)甲烷高温裂解制备乙炔;(3)甲烷与卤素反应制备卤代烃。与甲烷氯化比较,甲烷溴化因为产物选择性高(以单取代的CH3Br为主)更受化学家青睐,而且,溴甲烷的C-Br键比氯甲烷的C-Cl键弱,更便于脱卤等后续反应。
烷烃的溴化通常用易得且稳定的HBr作为溴源,以O2作为氧化剂在合适温度下催化氧化制备Br2,利用Br2完成溴代过程。常规的工艺是将O2与HBr首先通过催化剂(Ru、Ir、Ce的氧化物等)制备Br2,再与烷烃结合完成反应,将生成的HBr再收集利用,完成循环(图一中粉色区域所示)。这条工艺中HBr的氧化和烷烃的溴化可以分步控制条件,提高产物收率。另一种工艺则是将烷烃、HBr和O2混合,采用“一锅法”,直接氧化溴化(oxybromination)得到溴代烷烃。这种方法工艺简便且Br的利用率理论可以达到100%,更加符合原子经济性(图一红色区域)。不过,由于在溴化的体系中引入了O2,在反应过程中可能会生成CO2等副产物,因此寻找合适的催化剂成了优化这一路径的主要方向。
图一. 图片来源: Nature Chemistry
瑞士苏黎世理工学院(ETH Zurich Switzerland)的Javier Pérez-Ramírez团队筛选了常见的可用于HBr氧化的催化剂(RuO2、CeO2、TiO2)以及部分磷酸盐催化剂,发现部分磷酸盐催化剂可以在保持溴氧化活性的情况下降低体系中产生的CO2。在使用磷酸钒(vanadium phosphate,VPO)作为催化剂时,甲烷转化为CH3Br的收率最优,且几乎没有CO2的生成(图二)。作者进一步对VPO催化体系进行了系统的研究。(Catalyst design for natural-gas upgrading through oxybromination chemistry.Nature Chemistry,2016, DOI: 10.1038/NCHEM.2522)
图二. 图片来源:Nature Chemistry
作者对这些催化剂在不同温度(400-800K)下的HBr转化率即氧化活性和CH3Br等产物氧化的转化率即副反应的活性进行了测试,并对不同催化剂达到一定转化率的温度点进行了归纳,并做成了图三所示的金字塔图。图中越接近中心代表着越高的主反应活性或者越低的副反应(氧化反应)活性。从图中可以看出,VPO有着较高的催化HBr氧化的活性以及较低副反应氧化活性,其用于甲烷氧化溴化制备CH3Br有着较高的潜力。
图三. 图片来源:Nature Chemistry
作者进一步对VPO催化体系的反应条件进行了筛选。通过观察不同反应温度下Br2与甲烷的反应产物分布,可以发现CH3Br的收率随着温度的降低而降低(图四a),同时这种溴化反应的产物分布与甲烷氧化溴化的产物分布类似,甲烷氧化溴化的过程可能先经过Br2的生成再完成甲烷的溴化。作者还通过增加CH4分压的方法,降低了CH2Br2等过溴化产物的选择性。在进一步调节了反应温度、反应气总压力等条件后,CH3Br的选择性可以高达91%(图四c)。在接近实际生产的大量反应物存在的条件下,VPO体系仍然具有良好的CH3Br收率(图四d)。经过测试,VPO催化剂在100h的反应后仍然具有良好的稳定性,并且在乙烷和丙烷的溴化反应中也存在着潜在的应用价值。
图四. 图片来源:Nature Chemistry
总的来说,作者通过选择VPO催化剂,精细地控制了反应中的各种条件,一步法实现了甲烷的氧化溴化,同时获得了超过90%的CH3Br选择性。同时作者在优化反应体系时还关注了VPO催化剂上甲烷氧化溴化的反应路径,并观察了反应过程中VPO催化剂的变化。
原文链接:http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2522.html
来源:X_MOL
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
《Nature Chem.》:氧化溴化催化剂,一步反应实现天然气升值_青岛生物能源与过程研究所
青岛生物能源与过程研究所 免费考研网/2017-12-08
相关话题/工艺 图片 过程 天然气 测试
七项改变世界的化学分离技术_青岛生物能源与过程研究所
如今,以热能为基础的工业化学分离过程(例如,蒸馏)所消耗的能量占到了全球年均能量消耗的10%~15%。因此,提高分离技术,在生产燃料、塑料、食物等产品的过程中节约能量,将大大缓解全球的能源紧张局势。 最近,《自然》(Nature)刊登了一篇评论,来自佐治亚理工学院(GeorgiaInstitute ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Nature:“跨界”的钙钛矿型晶体_青岛生物能源与过程研究所
近三年,钙钛矿型材料在光电化学领域大放异彩。其太阳能电池的能量转换效率一路飙升,2011年只有6.5%,2013年底就已经提升至了15.4%,这一数据在2015年更是刷新至19%,并且还在继续升高,一颗材料领域的新星冉冉升起。 最近,美国哈佛大学的YouZhou和ShriramRamanatha ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08酿酒细胞工厂可高效合成油脂化学品及生物燃料_青岛生物能源与过程研究所
瑞典查尔姆斯理工大学JensNielsen教授课题组系统工程化改造了酿酒酵母,实现了长链脂肪酸及其衍生物烷烃和脂肪醇的高效合成。该成果近期发表于《自然-通讯》。首先,研究人员系统地重构了酿酒酵母的初级代谢,增加前体供给,实现了长链脂肪酸的高效合成,产量达到了10.4g/L。随后研究人员引入异源代谢途 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08邓子新:透视美国“国家微生物组计划”_青岛生物能源与过程研究所
2016年5月13日,美国科学技术政策办公室与相关政府机构和私人基金会共同颁布了一项新的美国微生物组计划。该计划的目标是:通过对各种不同环境中微生物生态系统的综合研究,深入揭示微生物组的行为规律,促进对健康微生物组功能的保护和恢复。这个计划首次把微生物研究提高到国家战略地位,强化并聚焦了微生物在解决 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Nature:从强关联氧化物到燃料电池_青岛生物能源与过程研究所
他们成功的关键就是通过对强关联材料的晶体对称性实施调控。这个团队所制造的第一批强关联材料燃料电池可以和一直以来比较先进的YSZ电解质燃料电池相媲美。可以预见的是,经过一定的工程优化,此种燃料电池的性能可以被大幅度提高,从而为实现燃料电池的大规模市场化应用提供基石。 由于接近100%理论能量转换效率 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08气候变化或抵消50年发展成果_青岛生物能源与过程研究所
清华大学地球系统科学研究中心与《柳叶刀》杂志近日联合举办的发布会公布了两篇科学报告。它们分别题为《健康与气候变化:保护公共健康的政策相应》和《在人类世保护人类健康:洛克菲勒基金会—柳叶刀星球健康委员会报告》。这是科学界第一次严肃提出气候变化和人类健康的影响关系,并首次提出“星球健康”的概念。 “气 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08细菌太阳能微流体板可持久供电_青岛生物能源与过程研究所
2016年4月21日,国际顶级学术期刊Cell子刊MolecularCell以长文在线发表了生物动态光学成像中心谢晓亮、白凡课题组的研究成果。在题为“EnhancedEffluxActivityFacilitatesDrugToleranceinDormantBacterialCells”的研究论文 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08日本材料研究新动向:自我修复_青岛生物能源与过程研究所
日本的大学和企业正在研究具备自我修复功能的新型材料,当出现裂痕和瑕疵后,该材料依然能够保持强度。具体来说,飞机引擎使用的高强度陶瓷、汽车车架使用的碳纤维复合材料(CFRP)以及电线等材料将具有自我修复功能。该高性能材料的耐用性得到提高,维护费用将降低,其用途将进一步扩大,有望诞生新的市场。 日本在 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08科学家揭示细菌耐药性产生分子机制_青岛生物能源与过程研究所
2016年4月21日,Cell子刊MolecularCell以长文在线发表了生物动态光学成像中心谢晓亮、白凡课题组的研究成果。在题为“EnhancedEffluxActivityFacilitatesDrugToleranceinDormantBacterialCells”的研究论文中,研究人员通过 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08中科院广州能源所“纤维素类生物质高效转化利用技术”项目取得重要进展_青岛生物能源与过程研究所
中国科学院广州能源研究所牵头承担的“863”计划“纤维素类生物质高效转化利用技术”项目日前取得系列重要进展,为农林废弃物高效利用提供了技术支撑。 该项目分10个课题,参与单位包括49家,通过合作项目在边际土地能源草分子育种与新种质创制、能源草高效制备生物天然气关键技术、木质纤维原料高效预处理技术与 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08