浙江大学和上海师范大学的科学家通过跨学科合作,为绿藻细胞披上一层二氧化硅“外衣”,使其能在自然条件下持续利用光合作用产氢,每升“绿藻侠”可产生17毫升氢气。这是生物光合产氢领域取得的一次重要突破,为化学手段改造光合生物进而实现光生物产氢提出了全新的思路,研究论文“Silicification-Induced Cell Aggregation for the Sustainable Production of H2 under Aerobic Conditions.”(《硅化诱导的细胞团聚实现有氧条件下的可持续产氢》)已发表于最新一期的《应用化学》杂志。(Angew. Chem. Int. Ed.)。
30多年前,科学家发现绿藻细胞中除了进行光合作用的光系统I和II以外,还存在着一种氢酶。当氢酶被激活后,绿藻就能在进行光合作用的时候产生氢气,然而氢酶对氧气非常敏感,在有氧的情况下,氢酶迅速失去活性。所以在正常光照条件下,绿藻通常是进行光合作用,产生氧气。氢酶被激活而产生氢气,是绿藻应对缺氧等“胁迫”状况下产生的一种应激反应,能否对绿藻进行改造,隔绝氧气,重新“唤醒”氢酶呢?课题组尝试用二氧化硅去包裹绿藻。和预想不一样的是,单个的绿藻细胞不能产氢,只是进行正常的光合作用,产生氧气。但他们“意外”发现,当一个个“穿”着二氧化硅的绿藻逐渐粘合在一起,形成了一个个绿藻复合体时,在培养绿藻的试管上方,探针既探测到了氧气,也探测到了氢气。实验证实,在正常的光照条件下,绿藻团能持续地产生氢气,目前最长时间可达72小时。这个偶然的发现使科学家们意识到,当矿化后的绿藻细胞层层叠叠形成复合体,在里层的绿藻细胞就会达到氧气的产生和消耗的动态平衡:在一个与外界隔绝的环境中,绿藻光合作用产生的氧气刚好被自身的呼吸作用消耗掉,使其既能存活,又能获得一个缺氧环境,这样氢酶就被激活了。因此我们既能探测到外层绿藻产生的氧气,也能探测到内层绿藻产生的氢气。这同时也解释了目前绿藻团聚体为何无法更久地持续产氢,随着内层绿藻自身继续生长,团聚体坍塌,氢酶再度失活。
从这一原理出发,研究团队尝试为绿藻细胞人为制造出缺氧环境。科学家从海洋中大量存在的另一种藻类——硅藻身上获得了仿生学意义上的启示,尝试利用生物矿化技术,以二氧化硅去包裹绿藻,从而获得缺氧环境。
在此之前,科学界也有让绿藻产氢的各种尝试。美国加州大学伯克利分校的Melis等人的两步法间接光解水制氢工艺,第一步是绿藻进行光合作用,固定二氧化碳,释放氧气,获得生物量的积累;第二步是在无硫、厌氧的环境中诱导氢酶的高表达。美国能源部认为这项技术有望最终达到市场可接受的生产成本。“两步法是从‘时间’上对产氧和产氢过程进行分隔来实现绿藻产氢,而我们的方法则是通过‘空间’上对产氧和产氢过程进行分离,实现了细胞的空间功能分化(spatial–functional differentiation)。”研究人员唐睿康说,相比之前的方法,仿生硅化的手段没有破坏绿藻正常的生命过程,能实现持续产氢,在工艺上更具操作性与便捷性。
72小时以后,如果‘抱团’的绿藻越来越多,绿藻团就会解散,产氢的过程又会停止。目前,研究团队正在试图破解绿藻生长失控的难题,控制绿藻的繁殖,那样就又离工业应用近了一步。
原文链接:http://onlinelibrary.wiley.com/doi/10.1002/ange.201504634/full
综合科技日报、浙江大学报道
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
生物矿化让绿藻光合作用产生氢气_青岛生物能源与过程研究所
青岛生物能源与过程研究所 免费考研网/2017-12-08
相关话题/细胞 环境 过程 生物 绿藻
低油价挑战生物燃料_青岛生物能源与过程研究所
阿根廷是世界上最大的生物柴油出口国。由于受低油价的冲击,近几个月来,阿根廷生物柴油商会不断向政府诉苦,呼吁出台更多的扶持政策。阿根廷生物柴油企业的困境,是目前全球生物燃料产业现状的一个缩影。美国、巴西、印尼的生物燃料企业,都面临类似的困境。 生物燃料的兴起,最早从上世纪70年代的石油危机开始。 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08宁波材料所揭示锂离子电池循环稳定性机理_青岛生物能源与过程研究所
如何在现有锂离子电池可用电极材料体系的前提下,提高锂离子电池性能特别是其循环稳定性,是目前全世界研究的重点和热点。 固体电解质界面膜,即SEI(SolidElectrolyteInterface)膜是在液态电解液锂离子电池首次(或前几次)充放电过程中,电极材料与电解液在固液界面上发生反应,形成一层 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Nature报道具有多孔结构的液体材料_青岛生物能源与过程研究所
一个国际联合研究小组宣称,他们合成了世界首种具有永久性多孔结构的液体材料。这种液体对气体具有极强的吸纳和溶解能力,有望提升目前许多化学反应的反应效率,并在碳捕获等领域获得应用,相关论文发表在11月12日出版的《自然》杂志上(Nature,2015,DOI:10.1038/nature16072)。 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08DNA合成方法取得突破_青岛生物能源与过程研究所
青岛科技大学的研究人员发现了几种DNA聚合酶具有内在的反转录酶活性,突破了DNA聚合酶只能以DNA为模板合成DNA的传统认知,对RNA的快速检测具有重要意义。该成果在线发表于《美国化学会志》。 核糖核酸(RNA)不仅是遗传信息的载体,还是活细胞中生命功能的执行者,是一类重要的检测靶标,在分子生物学 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Nature:人类基因组计划,回顾大生物学的25年_青岛生物能源与过程研究所
25年前,人类基因组计划启动了,时至今日,它所提供的经验仍旧指引着由它开启的,以团队协作为基础的科学研究。25年前,新落成的美国国家人类基因组研究中心(即现在的国立人类基因组研究所,NationalHumanGenomeResearchIns,NHGRI)在我们三人的领导下,协同美国国内与国际的合作 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08欧盟:石墨烯及相关材料未来十年科学与技术路线图_青岛生物能源与过程研究所
2004年石墨烯成功被分离,掀起了研究石墨烯及其相关材料(GRMs)的热潮。GRMs集多种优异性能于一体,是主导未来高科技竞争的超级材料。GRMs作为未来重要的战略材料,各国政府也在纷纷布局石墨烯计划。而“石墨烯旗舰计划”是欧洲最大的石墨烯研发计划之一,该项目于2013年1月被欧盟选定为首批技术旗舰 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08新出炉《中国制造 2025》重点领域技术路线图_青岛生物能源与过程研究所
10月30日,中华人民共和国工业和信息化部正式发布《<中国制造2025>重点领域技术路线图(2015年版)》电子版,对我国制造业转型升级和跨越发展作了整体部署,提出了我国制造业由大变强“三步走”战略目标,明确了建设制造强国的战略任务和重点,是我国实施制造强国战略的第一个十年行动纲领。《中国制造202 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08新石墨烯催化剂可低成本制氢_青岛生物能源与过程研究所
中美科学家最新研究表明,由石墨烯掺杂氮和钴原子所形成的催化剂可长期有效地从水中生产氢。 利用催化剂可将水分解氢和氧。来自中国科学院、美国莱斯大学、德克萨斯大学圣安东尼奥分校及休斯顿大学的科学家近日在《自然—通讯》杂志上报告,他们开发出一种稳定的固态催化剂,可取代昂贵的铂来制氢,在利用低成本催化剂生 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08Nat. Commun:一个微生物培养基配方数据库_青岛生物能源与过程研究所
NatureCommunications上发表的一篇文章报告说,包含数千种微生物和培养条件的一个新的数据库,将使研究人员能够预测新微生物的生长所需的合适培养基配方。这个数据库将会促进有关这些新微生物的生物学及其生物技术潜力的研究工作。 生活在环境中或我们体内的大多数微生物还不能在实验室中生长,从而 ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08生物丁醇合成关键酶的新型开关机制的解析_青岛生物能源与过程研究所
2015年9月22日Naturecommunication在线发表了解析丙酮丁醇梭菌硫解酶CaTHL三维结构及酶活性调节机制的研究。不同于大肠杆菌硫解酶EcTHL,CaTHL的活性是通过两个半胱氨酸残基(Cys88和Cys378)之间形成可逆的二硫键而被氧化还原开关调控。在野生型丙酮丁醇梭菌ATCC ...青岛生物能源与过程研究所 青岛生物能源与过程研究所 免费考研网 2017-12-08