姓 名:郭占云
学 位:博士
导师情况:博士生导师
研究领域:生物化学
研究方向:蛋白质与多肽
E-mail:zhan-yun.guo@tongji.edu.cn
guozy2002@yahoo.com.cn
联系电话:021-6598-8634; 135-8574-5920
通讯地址:上海市四平路1239号,同济大学生命科学与技术学院蛋白质研究所,医学楼辅楼303房间
个人简介:
郭占云,博士,研究员,博士生导师。1972年生,河北滦南人。1996年毕业于吉林大学分子生物学系,获学士学位。同年免试进入中国科学院上海生物化学研究所攻读博士学位,在冯佑民研究员实验室从事胰岛素超家族多肽研究,2001年8月获生物化学与分子生物学博士学位。2001-2003年在中国科学院生物化学与细胞生物学研究所工作,历任助理研究员和副研究员。2003年9月到美国Dartmouth College医学院从事博士后研究,主要研究胆固醇酯合酶1(ACAT1)的结构与功能。2006年底回国到同济大学生命科学与技术学院蛋白质研究所工作,主要从事蛋白质多肽激素与G蛋白偶联受体(GPCR)相互作用研究。以通讯作者或第一作者发表SCI论文60余篇,累计影响因子超过200,被引用1000余次。已主持国家自然科学基金面上项目6项,国家“重大新药创制”科技重大专项1项,国家重点基础研究发展计划课题1项。现任中国生物化学与分子生物学会理事、上海市生物化学与分子生物学学会理事。
主要从事以下研究:
1.多肽激素与GPCR相互作用的机制研究及新型激动剂、拮抗剂的设计开发;
2.从G蛋白偶联受体中筛选、鉴定孤儿多肽的受体;
3.多肽激素与受体相互作用研究新方法的开发。
发表论文:
1. Li HZ, Shou LL, Shao XX, Liu YL, Xu ZG,Guo ZY* (2020) Identifying key residues and key interactions for the binding of LEAP2 to receptor GHSR
2. Li HZ, Li N, Shao XX, Liu YL, Xu ZG, Guo ZY*. (2020) Hydrophobic interactions of relaxin family peptide receptor 3 with ligands identified using a NanoBiT-based binding assay. Biochimie 177: 117-126.
3. Wang JH, Li HZ, Shao XX, Nie WH, Liu YL, Xu ZG, Guo ZY* (2019) Identifying the binding mechanism of LEAP2 to receptor GHSR
4. Wang JH, Nie WH, Shao XX, Li HZ, Hu MJ, Liu YL, Xu ZG, Guo ZY*(2019) Exploring electrostatic interactions of relaxin family peptide receptor 3 and 4 with ligands using a NanoBiT-based binding assay. Biochim. Biophys. Acta Biomembr. 1861: 776-786.
5. Wang JH, Shao XX, Hu MJ, Liu YL, Xu ZG, Guo ZY* (2019) Functionality of an absolutely conserved glycine residue in the chimeric relaxin family peptide R3/I5. Amino Acids 51: 619-626.
6. 6. Wang JH, Hu MJ, Zhang L, Shao XX, Lv CH, Liu YL, Xu ZG, Guo ZY*(2018) Exploring receptor selectivity of the chimeric relaxin family peptide R3/I5 by incorporating unnatural amino acids. Biochimie 154: 77-85.
7. Hu MJ, Shao XX, Li HZ, Nie WH, Wang JH, Liu YL, Xu ZG, Guo ZY* (2018) Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation. Amino Acids 50: 1111-1119.
8. Wang JH, Hu MJ, Shao XX, Wei D, Liu YL, Xu ZG, Guo ZY* (2018) Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Arch. Biochem. Biophys. 646: 24-30.
9. Hu MJ, Wang JH, Shao XX, Liu YL, Xu ZG, Guo ZY* (2018) Overexpression of relaxin family peptide receptor
10. Wang JH, Shao XX, Hu MJ, Wei D, Nie WH, Liu YL, Xu ZG, Guo ZY* (2017) Rapid preparation of bioluminescent tracers for relaxin family peptides using sortase-catalysed ligation. Amino Acids 49: 1611-1617.
11. Hu MJ, Wei D, Shao XX, Wang JH, Liu YL, Xu ZG, Guo ZY*(2017) Interaction mechanism of insulin-like peptide 5 with relaxin family peptide receptor 4. Arch. Biochem. Biophys. 619: 27-34.
12. Wang JH, Shao XX, Hu MJ, Wei D, Liu YL, Xu ZG, Guo ZY* (2017) A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands. Amino Acids 49: 895-903.
13. Wei D, Hu MJ, Shao XX, Wang JH, Nie WH, Liu YL, Xu ZG, Guo ZY*(2017) Development of a selective agonist for relaxin family peptide receptor 3. Sci. Rep. 7: 3230.
14. Liu Y, Zhang L, Shao XX, Hu MJ, Liu YL, Xu ZG, Guo ZY* (2016) A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3. Arch. Biochem. Biophys. 604: 113-120.
15. Song G, Shao XX, Wu QP, Xu ZG, Liu YL*, Guo ZY*(2016) Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family. PloS One 11: e**.
16. Hu MJ, Shao XX, Wang JH, Wei D, Guo YQ, Liu YL, Xu ZG, Guo ZY* (2016) Mechanism for insulin-like peptide 5 distinguishing the homologous relaxin family peptide receptor 3 and 4. Sci. Rep. 6: 29648.
17. Hu MJ, Shao XX, Wang JH, Wei D, Liu YL, Xu ZG, Guo ZY*(2016) Identification of hydrophobic interactions between relaxin-3 and its receptor RXFP3: implication for a conformational change in the B-chain C-terminus during receptor binding. Amino Acids 48: 2227-2236.
18. Liu YL, Guo ZY* (2016) Novel bioluminescent binding assays for interaction studies of protein peptide hormones with their receptors. Amino Acids 48: 1151-1160.
19. Wu QP, Zhang L, Shao XX, Wang JH, Gao Y, Xu ZG, Liu YL*,Guo ZY* (2016) Application of the novel bioluminescent ligand–receptor binding assay to relaxin-RXFP1 system for interaction studies. Amino Acids 48: 1099-1107.
20. Song G, Wu QP, Xu T, Liu YL, Xu ZG, Zhang SF, Guo ZY* (2015) Quick preparation of nanoluciferase-based tracers for novel bioluminescent receptor-binding assays of protein hormones: using erythropoietin as a model. J. Photochem. Photobiol. B 153: 311-316.
21. Liu Y, Shao XX, Zhang L, Song G, Liu YL, Xu ZG, Guo ZY* (2015) Novel bioluminescent receptor-binding assays for peptide hormones: using ghrelin as a model. Amino Acids 47: 2237-2243.
22. Ji BJ, Song G, Zhang Z, Guo ZY* (2015) Efficient overexpression of human interleukin
23. Guo YQ, Wu QP, Shao XX, Shen T, Liu YL, Xu ZG,Guo ZY*(2015) Secretory overexpression and isotopic labeling of the chimeric relaxin family peptide R3/I
24. Liu Y, Song G, Shao XX, Liu YL, Guo ZY*(2015) Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model. Biochim. Biophys. Acta Biomembr. 1848: 688-694.
25. He SX, Song G, Shi JP, Guo YQ, Guo ZY* (2014) Nanoluciferase as a novel quantitative protein fusion tag: Application for overexpression and bioluminescent receptor-binding assays of human leukemia inhibitory factor. Biochimie 106: 140-148.
26. Wang XY, Guo YQ, Shao XX, Liu YL, Xu ZG, Guo ZY*(2014) Identification of important residues of insulin-like peptide 5 and its receptor RXFP4 for ligand-receptor interactions. Arch. Biochem. Biophys. 558: 127-132.
27. Wang XY, Guo YQ, Zhang WJ, Shao XX, Liu YL, Xu ZG, Guo ZY* (2014) The electrostatic interactions of relaxin-3 with receptor RXFP3 and the influence of its B-chain C-terminal conformation. FEBS J. 281: 2927-2936.
28. Zhang WJ, Wang XY, Guo YQ, Luo X, Gao XJ, Shao XX, Liu YL, Xu ZG, Guo ZY*(2014) The highly conserved negatively charged Glu141 and Asp145 of the G-protein-coupled receptor RXFP3 interact with the highly conserved positively charged arginine residues of relaxin-3. Amino Acids 46: 1393-1402.
29. Zhang L, Song G, Xu T, Wu QP, Shao XX, Liu YL, Xu ZG, Guo ZY*(2013) A novel ultrasensitive bioluminescent receptor-binding assay of INSL3 through chemical conjugation with nanoluciferase. Biochimie 95: 2454-2459.
30. Zhang WJ, Jiang Q, Wang XY, Song G, Shao XX, Guo ZY* (2013) A convenient method for europium-labeling of a recombinant chimeric relaxin family peptide R3/I5 for receptor-binding assays. J. Pept. Sci. 19: 350-354.
31. Song G, Jiang Q, Xu T, Liu YL*, Xu ZG*, Guo ZY*(2013) A convenient luminescence assay of ferroportin internalization to study its interaction with hepcidin. FEBS J. 280: 1773-1781.
32. Luo X, Jiang Q, Song G, Liu YL*, Xu ZG*, Guo ZY* (2012) Efficient oxidative folding and site-specific labeling of human hepcidin to study its interaction with receptor ferroportin. FEBS J. 279: 3166-3175.
33. Zhang WJ, Gao XJ, Liu YL, Shao XX, Guo ZY*(2012) Design, recombinant preparation and europium-labeling of a fully active easily-labeled INSL3 analogue for receptor-binding assays. Process Biochem. 47: 1856-1860.
34. Zhang WJ, Luo X, Song G, Wang XY, Shao XX, Guo ZY*(2012) Design, recombinant expression and convenient A-chain N-terminal europium-labelling of a fully active human relaxin-3 analogue. FEBS J. 279: 1505-1512.
35. Zhang WJ, Luo X, Liu YL, Shao XX, Wade JD*, Bathgate RA*, Guo ZY*(2012) Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies. Amino Acids 43: 983-992.
36. Chen GW, Luo X, Liu YL, Jiang Q, Qian XM, Guo ZY*(2011) R171H missense mutation of INSL
37. Luo X, Huang CH, Shao XX, Guo ZY*(2011) Design, recombinant expression and in vitro maturation of human insulin-like peptide 6 and a biotin-labeled analogue. Process Biochem. 46: 1243-1247.
38. Luo X, Liu YL, Layfield S, Shao XX, Bathgate RA*, Wade JD*, Guo ZY*(2010) A simple approach for the preparation of mature human relaxin-3. Peptides 31: 2083-2088.
39. Luo X, Bathgate RA, Zhang WJ, Liu YL, Shao XX, Wade JD*,Guo ZY*(2010) Design and recombinant expression of insulin-like peptide 5 precursors and the preparation of mature human INSL5. Amino Acids 39: 1343-1352.
40. Wu X, Shao X, Guo ZY*, Chi CW* (2010) Identification of neuropeptide Y-like conopeptides from the venom of Conus betulinus.Acta Biochim. Biophys. Sin. 42: 502-505.
41. Wu XC, Zhou M, Peng C, Shao XX, Guo ZY*, Chi CW* (2010) Novel conopeptides in a form of disulfide-crosslinked dimer. Peptides 31: 1001-1006.
42. Wang ZQ, Zhou ZM, Guo ZY*, Chi CW* (2010) Snapshot of the interaction between HIV envelope glycoprotein 120 and protein disulfide isomerase. Acta Biochim. Biophys. Sin. 42: 358-362.
43. Luo X, Bathgate RA, Liu YL, Shao XX, Wade JD*, Guo ZY* (2009) Recombinant expression of an insulin-like peptide 3 (INSL3) precursor and its enzymatic conversion to mature human INSL3. FEBS J. 276: 5203-5211.
44. Yuan DD, Liu L, Shao XX, Peng C, Chi CW*, Guo ZY* (2009) New conotoxins define the novel I3-superfamily. Peptides 30: 861-865.
45. Liu YL, Jiang S, Ke ZM, Wu HS, Chi CW, Guo ZY*(2009) Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production. Carbohyd. Res. 344: 815-819.
46. Yuan DD, Liu L, Shao XX, Peng C, Chi CW*,Guo ZY*(2008) Isolation and cloning of a conotoxin with a novel cysteine pattern from Conus caracteristicus. Peptides 29: 1521-1525.
47. Qian J, Guo ZY*, Chi CW* (2008) Cloning and isolation of a conus cysteine-rich protein homologous to Tex31 but without proteolytic activity. Acta Biochim. Biophys. Sin. 40: 174-181.
48. Guo ZY#, Qiao ZS#, Feng YM (2008) The in vitro oxidative folding of the insulin superfamily. Antioxid. Redox Signal. 10: 127-139.
49. Guo ZY, Chang CCY, Chang TY (2007) Functionality of the seventh and eighth transmembrane domains of acyl-coenzyme A:cholesterol acyltransferase 1. Biochemistry 46: 10063-10071.
50. Wang ZQ, Han YH, Shao XX, Chi CW*,Guo ZY*(2007) Molecular cloning, expression, and characterization of protein disulfide isomerase from Conus marmoreus. FEBS J. 274: 4778-4787.
51. Guo ZY, Lin S, Henien JA, Chang CY, Chang TY (2005) The active site His-460 of human acyl-coenzyme A: cholesterol acyltransferase 1 resides in a hitherto undisclosed transmembrane domain. J. Biol. Chem. 280: 37814-37826.
52. Guo ZY, Chang CY, Lu X, Chen J, Li BL, Chang TY (2005) The disulfide linkage and the free sulfhydryl accessibility of acyl-coenzyme A:cholesterol acyltransferase 1 as studied by using mPEG5000-maleimide. Biochemistry 44: 6537-6546.
53. Guo ZY, Zhang Z, Jia XY, Tang YH, Feng YM (2005) Mutational analysis of the absolutely conserved B8Gly: consequence on foldability and activity of insulin. Acta Biochim. Biophys. Sin. 37: 673-679.
54. Guo ZY, Jia XY, Feng YM (2004) Replacement of the interchain disulfide-forming amino acids A7 and B7 by glutamate impairs the structure and activity of insulin. Biol. Chem. 385: 1171-1175.
55. Guo ZY, Wang S, Tang YH, Feng YM (2004) Mutagenesis of the three conserved valine residues: consequence on the foldability of insulin. Biochim. Biophys. Acta 1699: 103-109.
56. Jia XY#, Guo ZY#, Wang Y, Xu Y, Duan SS, Feng YM (2003) Peptide models of four possible insulin folding intermediates with two disulfides. Protein Sci. 12: 2412-2419.
57. Wang S#, Guo ZY#, Shen L, Feng YM (2003) Refolding of the amphioxus insulin-like peptide: implications of a bifurcating evolution of the different folding behaviors of insulin and insulin-like growth factor 1. Biochemistry 42: 9687-9693.
58. Guo ZY, Tang YH, Wang S, Feng YM (2003) Contribution of the absolutely conserved B8Gly to the foldability of insulin. Biol. Chem. 384: 805-809.
59. Yan H#, Guo ZY#, Gong YW, Xi D, Feng YM (2003) A peptide model of insulin folding intermediate with one disulfide. Protein Sci. 12: 768-775.
60. Guo ZY, Shen L, Gu W, Wu AZ, Ma JG, Feng YM (2002) In vitro evolution of amphioxus insulin-like peptide to mammalian insulin. Biochemistry 41: 10603-10607.
61. Guo ZY, Shen L, Feng YM (2002) The different energetic state of the intra A-chain/domain disulfide of insulin and insulin-like growth factor 1 is mainly controlled by their B-chain/domain. Biochemistry 41: 10585-10592.
62. Guo ZY, Shen L, Feng YM (2002) The different folding behavior of insulin and insulin-like growth factor 1 is mainly controlled by their B-chain/domain. Biochemistry 41: 1556-1567.